| 研究生: |
林秉弘 Lin, Bing-Hong |
|---|---|
| 論文名稱: |
應用樣本熵與光基因刺激發展即時控制系統抑制光基因轉殖小鼠之癲癇活動 Development of Real-time Control System for Suppression of Epileptiform Discharge of Optogenetic Mice using Sample Entropy and Photic Stimulation |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 癲癇 、光基因刺激 、Thy1-mhChR2-YFP 、鋰鹽-毛果芸香鹼 、樣本熵 、閉迴路控制 |
| 外文關鍵詞: | seizure, photic stimulation, Thy1-mhChR2-YFP, lithium-pilocarpine, sample entropy, closed-loop control |
| 相關次數: | 點閱:152 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
顳葉癲癇為一種常見的慢性腦部神經疾病,病患中有將近三成無法由藥物有效控制,其中適用切除手術的病患又佔少數,因此有必要發展新的治療方法以抑制癲癇之發作。本研究目的為利用光基因刺激發展即時閉迴路控制系統以抑制癲癇發作。首先,在ChR2光基因轉殖鼠上施打鋰鹽與毛果芸香鹼以誘導急性與慢性癲癇,應用此動物模型模擬人類顳葉癲癇,由立體定位手術在小鼠海馬迴腦部雙側植入紀錄電極及光纖,並使用樣本熵法來做為辨識癲癇的指標。接著,以擷取的深腦電訊號作為回饋訊號設計光刺激的控制器,再將辨識指標與控制器結合,以樣本熵法辨識癲癇狀態,並以分段線性比例的控制法則調整光強度,建構出閉迴路光刺激控制系統。由10隻小鼠實驗結果顯示本研究發展的控制系統在急性癲癇發作期間辨識率高達95%以上,而在慢性期辨識率約在85%~90%之間,樣本熵可有效的分辨出正常狀態與癲癇發作,而在抑制成效上急性與慢性期間光刺激皆能快速且有效的抑制癲癇發作,兩者抑制成功率皆高於80%,在慢性期間最高可達98.3%。總之,樣本熵與光刺激技術可對未來顳葉癲癇治療提供神經刺激裝置新的發展方向。
Temporal lobe epilepsy is the common form of partial epilepsy. Although antiepileptic drugs have been found, there are still 30% of patients who cannot benefit from these treatments. Only a minority of patients are suitable for resection of lesion sites, so new method needs to be developed to inhibit seizure. The purpose of this study is to develop a control system to suppress chronic seizure by using photic stimulation. To simulate human seizure in the animal experiment, the Thy1-ChR2-YPF transgenic mice were injected with lithium and pilocarpine to induce acute and chronic seizure. Then, two electrodes and an optical fiber were implanted into the hippocampus of the mice. Depth-EEG measured from mice is used to design the detection and control system. The sample entropy calculated from contralateral depth-EEG was utilized to recognize epileptics state and to adjust the intensity of photic stimulation by using a piecewise linear proportional law in the control system. The results from 10 subjects showed seizure recognition rate can rise up to 95% in the acute stage and 85 to 90% in the chronic stage. The photic stimulation can swiftly and effectively inhibit seizure for both acute and chronic stages, and the highest suppression rate achieved was 98.3% in the chronic stage. In conclusion, sample entropy method and photic stimulation technology may provide a new direction of development on treating temporal lobe epilepsy in the future.
[1] WHO, “Epilepsy,” World Health Organization, 2017.
[2] “Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the commission on classification and terminology of the international league against epilepsy,” Epilepsia., vol. 22, no. 4, pp. 489-501, 1981.
[3] “Proposal for revised classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the international league against epilepsy,” Epilepsia., vol. 30, no. 4, pp. 389-99, 1989.
[4] W. O. Tatum, “Mesial temporal lobe epilepsy,” Journal of Clinical Neurophysiology : official publication of the American Electroencephalographic Society., vol. 29, no. 5, pp. 356-65, 2012.
[5] J. Engel, “Introduction to temporal lobe epilepsy,” Epilepsy Research, vol. 26, no. 1, pp. 141-150, 1996.
[6] J. N. Bentley, C. Chestek, W. C. Stacey, and P. G. Patil, “Optogenetics in epilepsy,” Neurosurgical Focus, vol. 34, no. 6, pp. E4, 2013.
[7] E. B. Dalkilic, “Neurostimulation Devices Used in Treatment of Epilepsy,” Current Treatment Options in Neurology, vol. 19, no. 2, pp. 7, 2017.
[8] M.-C. Kuo, T. Jao, and H.-H. Liu, “Update of Neurositmulation for Refractory Epilepsy: Deep Brain Stimulation and Responsive Neurostimulation,” Acta Neurologica Taiwanica, vol. 25, no. 1, pp. 38-48, 2016.
[9] J. Zabara, “Inhibition of experimental seizures in canines by repetitive vagal stimulation,” Epilepsia, vol. 33, no. 6, pp. 1005-1012, 1992.
[10] R. Kuba, M. Brázdil, M. Kalina, T. Procházka, J. Hovorka, T. Nežádal, J. Hadač, K. Brožová, V. Sebroňová, V. Komárek, P. Marusič, H. Ošlejšková, J. Zárubová, and I. Rektor, “Vagus nerve stimulation: Longitudinal follow-up of patients treated for 5 years,” Seizure, vol. 18, no. 4, pp. 269-274, 2009.
[11] D. Lulic, A. Ahmadian, A. A. Baaj, S. R. Benbadis, and F. L. Vale, “Vagus nerve stimulation,” Neurosurgical Focus, vol. 27, no. 3, pp. E5, 2009.
[12] A. Schulze-Bonhage, “Brain stimulation as a neuromodulatory epilepsy therapy,” Seizure, vol. 44, pp. 169-175, 2017.
[13] C. N. Heck, D. King‐Stephens, A. D. Massey, D. R. Nair, B. C. Jobst, G. L. Barkley, V. Salanova, A. J. Cole, M. C. Smith, R. P. Gwinn, C. Skidmore, P. C. V. Ness, G. K. Bergey, Y. D. Park, I. Miller, E. Geller, P. A. Rutecki, R. Zimmerman, D. C. Spencer, A. Goldman, J. C. Edwards, J. W. Leiphart, R. E. Wharen, J. Fessler, N. B. Fountain, G. A. Worrell, R. E. Gross, S. Eisenschenk, R. B. Duckrow, L. J. Hirsch, C. Bazil, C. A. O'Donovan, F. T. Sun, T. A. Courtney, C. G. Seale, and M. J. Morrell, “Two‐year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: Final results of the RNS System Pivotal trial,” Epilepsia, vol. 55, no. 3, pp. 432-441, 2014.
[14] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, I. Osorio, J. Nazzaro, and D. Labar, “Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy,” Epilepsia, vol. 51, no. 5, pp. 899-908, 2010.
[15] V. Salanova, T. Witt, R. Worth, T. R. Henry, R. E. Gross, J. M. Nazzaro, D. Labar, M. R. Sperling, A. Sharan, and E. Sandok, “Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy,” Neurology, vol. 84, no. 10, pp. 1017-1025, 2015.
[16] C.-C. Chiang, C.-C. K. Lin, M.-S. Ju, and D. M. Durand, “High frequency stimulation can suppress globally seizures induced by 4-AP in the rat hippocampus: An acute in vivo study,” Brain Stimulation, vol. 6, no. 2, pp. 180-189, 2013.
[17] B. H. Siah, C.-C. Chiang, M.-S. Ju, and C.-C. K. Lin, “Suppression of acute seizures by theta burst electrical stimulation of the hippocampal commissure using a closed-loop system,” Brain Research, vol. 1593, pp. 117–125, 2014.
[18] B. V. Zemelman, G. A. Lee, M. Ng, and G. Miesenböck, “Selective Photostimulation of genetically chARGed Neurons,” Neuron, vol. 33, no. 1, pp. 15-22, 2002.
[19] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proceedings of the National Academy of Sciences, vol. 100, no. 24, pp. 13940-13945, 2003.
[20] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nature Neuroscience, vol. 8, no. 9, pp. 1263-1268, 2005.
[21] F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature, vol. 446, no. 7136, pp. 633-639, 2007.
[22] J. T. Paz, and J. R. Huguenard, “Optogenetics and epilepsy: Past, present and future,” Epilepsy Currents, vol. 15, no. 1, pp. 34-38, 2015.
[23] J. Lanyi, “Halorhodopsin: A light-driven chloride ion pump,” Annual Review of Biophysics and Biomolecular Structure, vol. 15, no. 1, pp. 11-28, 1986.
[24] J. Tonnesen, A. T. Sorensen, K. Deisseroth, C. Lundberg, and M. Kokaia, “Optogenetic control of epileptiform activity,” Proceedings of the National Academy of Sciences, vol. 106, no. 29, pp. 12162-12167, 2009.
[25] J. Wang, D. A. Borton, J. Zhang, R. D. Burwell, and A. V. Nurmikko, “A neurophotonic device for stimulation and recording of neural microcircuits,” Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference., vol. 2010, pp. 2935-8, 2010.
[26] C.-C. Chiang, T. P. Ladas, L. E. Gonzalez-Reyes, and D. M. Durand, “Seizure suppression by high frequency Optogenetic stimulation using in vitro and in vivo animal models of epilepsy,” Brain Stimulation, vol. 7, no. 6, pp. 890-899, 2014.
[27] 陳穎俞, 以光基因刺激適應性控制4-AP誘發之癲癇波, 國立成功大學機械工程學系碩士論文, 2015.
[28] L. Orosco, A. G. Correa, and E. Laciar, “Review: a survey of performance and techniques for automatic epilepsy detection,” Journal of Medical and Biological Engineering, vol. 33, no. 6, pp. 526-537, 2013.
[29] U. R. Acharya, S. V. Sree, and J. S. Suri, “Automatic detection of epileptic EEG signals using higher order cumulant features,” International Journal of Neural Systems, vol. 21, no. 05, pp. 403-414, 2011.
[30] X. Du, S. Dua, R. U. Acharya, and C. K. Chua, “Classification of Epilepsy Using High-Order Spectra Features and Principle Component Analysis,” Journal of Medical Systems, vol. 36, no. 3, pp. 1731-1743, 2012.
[31] S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297-2301, 1990.
[32] C. C. Mayer, M. Bachler, M. Hörtenhuber, C. Stocker, A. Holzinger, and S. Wassertheurer, “Selection of entropy-measure parameters for knowledge discovery in heart rate variability data,” BMC bioinformatics, vol. 15, no. 6, pp. S2, 2014.
[33] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Transactions on information Technology in Biomedicine, vol. 11, no. 3, pp. 288-295, 2007.
[34] C.-P. Young, S.-F. Liang, D.-W. Chang, Y.-C. Liao, F.-Z. Shaw, and C.-H. Hsieh, “A portable wireless online closed-loop seizure controller in freely moving rats,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 2, pp. 513-521, 2011.
[35] Y. Song, J. Crowcroft, and J. Zhang, “Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine,” Journal of Neuroscience Methods, vol. 210, no. 2, pp. 132-146, 2012.
[36] L. Kandratavicius, P. Balista, C. Lopes-Aguiar, R. Ruggiero, E. Umeoka, N. Garcia-Cairasco, L. Bueno-Junior, and J. Leite, “Animal models of epilepsy: Use and limitations,” Neuropsychiatric Disease and Treatment, pp. 1693, 2014.
[37] R. S. Fisher, “Animal models of the epilepsies,” Brain Research Reviews, vol. 14, no. 3, pp. 245-278, 1989.
[38] P. Vincent, and C. Mulle, “Kainate receptors in epilepsy and excitotoxicity,” Neuroscience, vol. 158, no. 1, pp. 309-323, 2009.
[39] M. Lévesque, and M. Avoli, “The kainic acid model of temporal lobe epilepsy,” Neuroscience & Biobehavioral Reviews, vol. 37, no. 10, pp. 2887-2899, 2013.
[40] G. Curia, D. Longo, G. Biagini, R. S. G. Jones, and M. Avoli, “The pilocarpine model of temporal lobe epilepsy,” Journal of Neuroscience Methods, vol. 172, no. 2-4, pp. 143-157, 2008.
[41] V. André, C. Dubé, J. François, C. Leroy, M.-A. Rigoulot, C. Roch, I. J. Namer, and A. Nehlig, “Pathogenesis and pharmacology of epilepsy in the Lithium-pilocarpine model,” Epilepsia, vol. 48, no. s5, pp. 41-47, 2007.
[42] I. Cantallops, and A. Routtenberg, “Kainic acid induction of mossy fiber sprouting: Dependence on mouse strain,” Hippocampus, vol. 10, no. 3, pp. 269-273, 2000.
[43] M. Mazzuferi, G. Kumar, C. Rospo, and R. M. Kaminski, “Rapid epileptogenesis in the mouse pilocarpine model: Video-EEG, pharmacokinetic and histopathological characterization,” Experimental Neurology, vol. 238, no. 2, pp. 156-167, 2012.
[44] M. Lévesque, M. Avoli, and C. Bernard, “Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration,” Journal of Neuroscience Methods., vol. 260, pp. 45-52, 2015.
[45] J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered Channelrhodopsin variants with improved properties and Kinetics,” Biophysical Journal, vol. 96, no. 5, pp. 1803-1814, 2009.
[46] J. Y. Lin, “A user's guide to channelrhodopsin variants: Features, limitations and future developments,” Experimental Physiology, vol. 96, no. 1, pp. 19-25, 2010.
[47] J. S. Richman, and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039-H2049, 2000.
[48] 蕭善勻, 應用近似熵及自我回歸實現比流器飽和偵側與修正, 國立臺北科技大學自動化科技研究所碩士論文2008.
[49] G. Paxinos, and K. B. Franklin, The mouse brain in stereotaxic coordinates: Gulf Professional Publishing, 2004.
[50] 詹傑凱, 以α頻率突發波抑制光基因轉殖小鼠之癲癇活動, 國立成功大學機械工程學系碩士論文, 2016.
[51] Y. Zhang, G.-E. Cai, Q. Yang, Q.-C. Lu, S.-T. Li, and G. Ju, “Time-dependent changes in learning ability and induction of long-term potentiation in the lithium–pilocarpine-induced epileptic mouse model,” Epilepsy & Behavior, vol. 17, no. 4, pp. 448-454, 2010.
[52] P. S. Buckmaster, and M. M. Haney, “Factors affecting outcomes of pilocarpine treatment in a mouse model of temporal lobe epilepsy,” Epilepsy Research, vol. 102, no. 3, pp. 153-159, 2012.
[53] F. A. Scorza, R. M. Arida, M. d. G. Naffah-Mazzacoratti, D. A. Scerni, L. Calderazzo, and E. A. Cavalheiro, “The pilocarpine model of epilepsy: what have we learned?,” Anais da Academia Brasileira de Ciencias, vol. 81, no. 3, pp. 345-365, 2009.
[54] E. Krook-Magnuson, C. Armstrong, M. Oijala, and I. Soltesz, “On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy,” Nature Communications, vol. 4, pp. 1376, 2013.
[55] X. G. Li, P. Somogyi, A. Ylinen, and G. Buzsaki, “The hippocampal CA3 network: an in vivo intracellular labeling study,” Journal of Comparative Neurology, vol. 339, no. 2, pp. 181-208, 1994.
[56] A. Sik, M. Penttonen, A. Ylinen, and G. Buzsáki, “Hippocampal CA1 interneurons: an in vivo intracellular labeling study,” Journal of Neuroscience, vol. 15, no. 10, pp. 6651-6665, 1995.