簡易檢索 / 詳目顯示

研究生: 范秭翊
Fan, Tzu-Yi
論文名稱: 利用鐿金屬於低溫進行MIS ohmic contact之研究
Investigation of MIS Ohmic Contact by Using Ytterbium at Low Temperature
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: MIS接面低溫製程熱穩定性費米能階釘札效應
外文關鍵詞: MIS contact, low temperature process, thermal stability, Fermi level pinning effect
相關次數: 點閱:110下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於減緩金半接面之費米能階釘札效應,藉由多種低溫製程製備極薄之絕緣層,形成金氧半歐姆接觸。其中,我提出了易於控制的低溫成長方法,成功製備低蕭基能障63毫電子伏特之金氧半歐姆接觸。
    並探討不同功函數之金屬,鋯和鐿,於此結構之電性,證實此製程能有效減緩費米能階釘札效應。更進一步地以反應濺鍍沉積氮化鐿,製備具有良好的電性及熱穩定性的金氧半歐姆接觸。

    This work dedicated to alleviating the fermi level pinning effect on metal-semiconductor interface by inserting an ultra-thin insulator with room temperature process. I proposed a well-controlled room-temperature process to form a Ohmic contact with low effective barrier height of 63meV. Also, the modulation of fermi level is demonstrated by comparing with two different work function metals, Zr and Yb. Further, introducing reactive sputtering to deposit YbN shows not only low barrier height and high thermal stability.

    摘要 I Abstract II 誌謝 III Contents VI Figure Captions VIII Table Captions X Chapter 1 Introduction 1 1.1 Background 1 1.2 Evolution of S/D engineer 3 1.2.1 Conventional MOSFET 3 1.2.2 SB-MOSFET 4 1.2.3 MOSFETs with MIS contacts 5 1.3 Motivation 7 1.3.1 Comparisons of MS and MIS contacts 7 1.3.2 Material properties of insulator and contact metal 9 1.3.3 Low temperature process 10 1.4 Organization of the thesis 11 Chapter 2 Literature survey 13 2.1 Metal induced gap states & Fermi level pinning effect 13 2.2 MIS Ohmic contact 15 2.3 Extraction of Schottky barrier height 16 2.4 TLM measurement 18 Chapter 3 Experiment 21 3.1 Experimental equipment 21 3.1.1 Sputtering system 21 3.1.2 UV ozone cleaner 22 3.1.3 Rapid thermal annealing (RTA) 23 3.2 Material analysis equipment 24 3.2.1 X-ray diffraction (XRD) 24 3.2.2 Transmission electron microscopy (TEM) 25 3.3 Electrical analysis equipment 27 3.3.1 Current-Voltage (I-V) Measurement 27 3.3.2 Hot plate 27 3.4 Fabrication process 27 3.4.1 Substrates cleaning 28 3.4.2 Growing insulator 28 3.4.3 Electrode deposition 30 3.4.4 Backside electrode deposition 30 3.4.5 Annealing 31 Chapter 4 Results and discussion 32 4.1 Electrical property of various insulator-growing 32 4.1.1 Grown in UV ozone 32 4.1.2 Grown by immersing in D.I. water 36 4.1.3 Grown by immersing in H2O2 water 40 4.1.4 Growth by combining UV ozone with H2O 43 4.1.5 Growth by combining UV ozone with H2O2 46 4.2 Thermal stability of Yb-MIS structure 49 4.2.1 Reactive sputtering Yb target with 1 sccm nitrogen gas 51 4.2.2 Reactive sputtering Yb target with 2 sccm nitrogen gas 53 4.2.3 Reduce the thickness of YbN (Ar:N2=5:1) 54 4.2.4 Reduce the thickness of YbN (Ar:N2=5:5) 57 4.2.5 Reduce the thickness of YbN (Ar:N2=5:10) 58 4.2.6 Improvement of thermal stability 60 4.3 Comparison table 62 Chapter 5 Conclusion & future prospects 63 Reference 64

    [1] A. V. Y. Thean, D. Yakimets, T. H. Bao, P. Schuddinck, S. Sakhare, M. G. Bardon, et al., "Vertical device architecture for 5nm and beyond: Device & circuit implications," in 2015 Symposium on VLSI Technology (VLSI Technology), 2015, pp. T26-T27.
    [2] A. Jacob, R. Xie, M. Gyu Sung, L. Liebmann, R. Lee, and B. Taylor, Scaling Challenges for Advanced CMOS Devices, 2017.
    [3] M. H. Chiang, J. N. Lin, K. Kim, and C. T. Chuang, "Random Dopant Fluctuation in Limited-Width FinFET Technologies," IEEE Transactions on Electron Devices, vol. 54, pp. 2055-2060, 2007.
    [4] J. M. Larson and J. P. Snyder, "Overview and status of metal S/D Schottky-barrier MOSFET technology," IEEE Transactions on Electron Devices, vol. 53, pp. 1048-1058, 2006.
    [5] T. Bing-Yue and L. Chia-Pin, "A novel 25-nm modified Schottky-barrier FinFET with high performance," IEEE Electron Device Letters, vol. 25, pp. 430-432, 2004.
    [6] V. Heine, "Theory of Surface States," Physical Review, vol. 138, pp. A1689-A1696, 06/14/ 1965.
    [7] T. Nishimura, K. Kita, and A. Toriumi, "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface," Applied Physics Letters, vol. 91, p. 123123, 2007/09/17 2007.
    [8] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Applied Physics Letters, vol. 89, p. 252110, 2006/12/18 2006.
    [9] D. Connelly, C. Faulkner, P. A. Clifton, and D. E. Grupp, "Fermi-level depinning for low-barrier Schottky source/drain transistors," Applied Physics Letters, vol. 88, p. 012105, 2006/01/02 2006.
    [10] M. K. Husain, X. V. Li, and C. H. d. Groot, "High-Quality Schottky Contacts for Limiting Leakage Currents in Ge-Based Schottky Barrier MOSFETs," IEEE Transactions on Electron Devices, vol. 56, pp. 499-504, 2009.
    [11] K. W. Ang, K. Majumdar, K. Matthews, C. D. Young, C. Kenney, C. Hobbs, et al., "Effective Schottky Barrier Height modulation using dielectric dipoles for source/drain specific contact resistivity improvement," in 2012 International Electron Devices Meeting, 2012, pp. 18.6.1-18.6.4.
    [12] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, et al., "Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts," Applied Physics Letters, vol. 104, p. 112101, 2014/03/17 2014.
    [13] C. N. Ni, X. Li, S. Sharma, K. V. Rao, M. Jin, C. Lazik, et al., "Ultra-low contact resistivity with highly doped Si:P contact for nMOSFET," in 2015 Symposium on VLSI Technology (VLSI Technology), 2015, pp. T118-T119.
    [14] H. Yu, M. Schaekers, K. Barla, N. Horiguchi, N. Collaert, A. V.-Y. Thean, et al., "Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts," Applied Physics Letters, vol. 108, p. 171602, 2016/04/25 2016.
    [15] P. J. King, E. Arac, S. Ganti, K. S. K. Kwa, N. Ponon, and A. G. O'Neill, "Improving metal/semiconductor conductivity using AlOx interlayers on n-type and p-type Si," Applied Physics Letters, vol. 105, p. 052101, 2014/08/04 2014.
    [16] A. M. Roy, J. Y. J. Lin, and K. C. Saraswat, "Specific Contact Resistivity of Tunnel Barrier Contacts Used for Fermi Level Depinning," IEEE Electron Device Letters, vol. 31, pp. 1077-1079, 2010.
    [17] J. Vuillod and G. Pananakakis, "Electronic properties of Al-SiO2-(n or p) Si MIS tunnel diodes," Rev. Phys. Appl. (Paris), vol. 20, pp. 37-44, // 1985.
    [18] H. B. Michaelson, "The work function of the elements and its periodicity," Journal of Applied Physics, vol. 48, pp. 4729-4733, 1977/11/01 1977.
    [19] D. R. Gajula, P. Baine, M. Modreanu, P. K. Hurley, B. M. Armstrong, and D. W. McNeill, "Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers," Applied Physics Letters, vol. 104, p. 012102, 2014/01/06 2014.
    [20] M. Quirk and J. Serda, Semiconductor Manufacturing Technology: Prentice Hall, 2001.
    [21] M. Willander and H. Ã. Pettersson, Scaling and Integration of High Speed Electronics and Optomechanical Systems, 2017.
    [22] K.-W. Ang, K. Majumdar, K. Matthews, C. Young, C. Kenney, C. Hobbs, et al., Effective Schottky Barrier Height modulation using dielectric dipoles for source/drain specific contact resistivity improvement, 2012.
    [23] M. Kobayashi, A. Kinoshita, K. Saraswat, H. S. P. Wong, and Y. Nishi, "Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application," Journal of Applied Physics, vol. 105, p. 023702, 2009/01/15 2009.
    [24] N. Tomonori, K. Koji, and T. Akira, "A Significant Shift of Schottky Barrier Heights at Strongly Pinned Metal/Germanium Interface by Inserting an Ultra-Thin Insulating Film," Applied Physics Express, vol. 1, p. 051406, 2008.
    [25] J. F. Wager and J. Robertson, "Metal-induced gap states modeling of metal-Ge contacts with and without a silicon nitride ultrathin interfacial layer," Journal of Applied Physics, vol. 109, p. 094501, 2011/05/01 2011.
    [26] L. Lin, J. Robertson, and S. J. Clark, "Shifting Schottky barrier heights with ultra-thin dielectric layers," Microelectronic Engineering, vol. 88, pp. 1461-1463, 2011/07/01/ 2011.
    [27] R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, "Ohmic contact formation on n-type Ge," Applied Physics Letters, vol. 92, p. 022106, 2008/01/14 2008.
    [28] D. Lee, S. Raghunathan, R. J. Wilson, D. E. Nikonov, K. Saraswat, and S. X. Wang, "The influence of Fermi level pinning/depinning on the Schottky barrier height and contact resistance in Ge/CoFeB and Ge/MgO/CoFeB structures," Applied Physics Letters, vol. 96, p. 052514, 2010/02/01 2010.
    [29] Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R. K. Kawakami, et al., "Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films," Applied Physics Letters, vol. 96, p. 102103, 2010/03/08 2010.
    [30] Y. Zhou, M. Ogawa, M. Bao, W. Han, R. K. Kawakami, and K. L. Wang, "Engineering of tunnel junctions for prospective spin injection in germanium," Applied Physics Letters, vol. 94, p. 242104, 2009/06/15 2009.
    [31] Y. Zhou, M. Ogawa, X. Han, and K. L. Wang, "Alleviation of Fermi-level pinning effect on metal/germanium interface by insertion of an ultrathin aluminum oxide," Applied Physics Letters, vol. 93, p. 202105, 2008/11/17 2008.
    [32] B. E. Coss, C. Smith, W. Y. Loh, P. Majhi, R. M. Wallace, J. Kim, et al., "Contact Resistance Reduction to FinFET Source/Drain Using Novel Dielectric Dipole Schottky Barrier Height Modulation Method," IEEE Electron Device Letters, vol. 32, pp. 862-864, 2011.
    [33] Z. Yuan, A. Nainani, Y. Sun, J. Y. J. Lin, P. Pianetta, and K. C. Saraswat, "Schottky barrier height reduction for metal/n-GaSb contact by inserting TiO2 interfacial layer with low tunneling resistance," Applied Physics Letters, vol. 98, p. 172106, 2011/04/25 2011.
    [34] J. Hu, K. C. Saraswat, and H. S. Philip Wong, "Metal/III-V effective barrier height tuning using atomic layer deposition of high-κ/high-κ bilayer interfaces," Applied Physics Letters, vol. 99, p. 092107, 2011/08/29 2011.
    [35] J. Y. J. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, "Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height," Applied Physics Letters, vol. 98, p. 092113, 2011/02/28 2011.
    [36] B.-Y. Tsui and M.-H. Kao, "Mechanism of Schottky barrier height modulation by thin dielectric insertion on n-type germanium," Applied Physics Letters, vol. 103, p. 032104, 2013/07/15 2013.
    [37] S. Dev, N. Remesh, Y. Rawal, P. P. Manik, B. Wood, and S. Lodha, "Low resistivity contact on n-type Ge using low work-function Yb with a thin TiO2 interfacial layer," Applied Physics Letters, vol. 108, p. 103507, 2016/03/07 2016.
    [38] B. E. Coss, P. Sivasubramani, B. Brennan, P. Majhi, R. M. Wallace, and J. Kim, "Measurement of Schottky barrier height tuning using dielectric dipole insertion method at metal–semiconductor interfaces by photoelectron spectroscopy and electrical characterization techniques," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, p. 021202, 2013/03/01 2013.
    [39] J. Hu, K. C. Saraswat, and H. S. P. Wong, "Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts," Journal of Applied Physics, vol. 107, p. 063712, 2010/03/15 2010.
    [40] B. E. Coss, W. Y. Loh, R. M. Wallace, J. Kim, P. Majhi, and R. Jammy, "Near band edge Schottky barrier height modulation using high-κ dielectric dipole tuning mechanism," Applied Physics Letters, vol. 95, p. 222105, 2009/11/30 2009.
    [41] J. Hu, A. Nainani, Y. Sun, K. C. Saraswat, and H. S. Philip Wong, "Impact of fixed charge on metal-insulator-semiconductor barrier height reduction," Applied Physics Letters, vol. 99, p. 252104, 2011/12/19 2011.
    [42] H. H. Berger, "Models for contacts to planar devices," Solid-State Electronics, vol. 15, pp. 145-158, 1972/02/01/ 1972.
    [43] H. Berger, "Contact resistance on diffused resistors," in 1969 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 1969, pp. 160-161.
    [44] R. Halevy, "A method for measuring the specific interface resistivity between two semiconductor layers and its application to a heavily doped n-type InP/GaInAs heterostructure," [s.n.], Haifa, 2011.
    [45] E. C. Muñoz, C. Díaz, E. Navarrete, R. Henríquez, R. Schrebler, R. Córdova, et al., "Characterization of surface changes on silicon and porous silicon after interaction with hydroxyl radicals," Arabian Journal of Chemistry, 2016/11/25/ 2016.
    [46] L. Hultman, "Thermal stability of nitride thin films," Vacuum, vol. 57, pp. 1-30, 2000/04/01/ 2000.
    [47] R. Munter, "Advanced oxidation processes–current status and prospects," Proc. Estonian Acad. Sci. Chem, vol. 50, pp. 59-80, 2001.
    [48] A. Tosaka, H. Nonaka, S. Ichimura, and T. Nishiguchi, "Reaction analysis of initial oxidation of silicon by UV-light-excited ozone and the application to rapid and uniform Si O 2 film growth," Journal of applied physics, vol. 101, p. 034909, 2007.
    [49] U. Neuwald, A. Feltz, U. Memmert, and R. Behm, "Chemical oxidation of hydrogen passivated Si (111) surfaces in H2O2," Journal of applied physics, vol. 78, pp. 4131-4136, 1995.
    [50] Z. Wu, W. Huang, C. Li, H. Lai, and S. Chen, "Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness," IEEE Transactions on Electron Devices, vol. 59, pp. 1328-1331, 2012.
    [51] R. Fujii, Y. Gotoh, M. Liao, H. Tsuji, and J. Ishikawa, "Work function measurement of transition metal nitride and carbide thin films," Vacuum, vol. 80, pp. 832-835, 2006.
    [52] P. Paramahans, S. Gupta, R. Mishra, N. Agarwal, A. Nainani, Y. Huang, et al., "ZnO: an attractive option for n-type metal-interfacial layer-semiconductor (Si, Ge, SiC) contacts," in VLSI Technology (VLSIT), 2012 Symposium on, 2012, pp. 83-84.
    [53] P. King, E. Arac, S. Ganti, K. Kwa, N. Ponon, and A. O'Neill, "Improving metal/semiconductor conductivity using AlO x interlayers on n-type and p-type Si," Applied Physics Letters, vol. 105, p. 052101, 2014.
    [54] H.-S. Wong, L. Chan, G. Samudra, and Y.-C. Yeo, "Low Schottky barrier height for silicides on n-type Si (100) by interfacial selenium segregation during silicidation," Applied physics letters, vol. 93, p. 072103, 2008.

    下載圖示 校內:2023-02-11公開
    校外:2023-02-11公開
    QR CODE