| 研究生: |
凌久原 Ling, Chiu-Yuan |
|---|---|
| 論文名稱: |
動態多重表徵對於國中生幾何單元學習成效之影響 Effects of Dynamic Multiple Representations on Junior High School Students’ Academic Performance on Geometry and Attitudes towards Mathematics |
| 指導教授: |
于富雲
Yu, Fu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 教育研究所 Institute of Education |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 285 |
| 中文關鍵詞: | 數學學習態度 、GSP動態幾何軟體 、學習成就 、視覺化能力 、動態多重表徵 、幾何學 |
| 外文關鍵詞: | attitude toward mathematics, visualization ability, dynamic multiple representations, academic achievement, GSP dynamic geometry software, geometry |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討課室中教師配合教學應用動態幾何軟體以呈現不同型態之視覺表徵對於國中學生數學學習成就與數學學習態度之影響,並進一步瞭解個人視覺化能力與測量階段對於國中學生學習成效之交互影響情形,以及動態多重表徵對於學生在學習幾何的過程中所產生的影響。
本研究採不等組前後測準實驗研究法,以安南國中二年級二個班級共73位學生為正式實驗的研究對象,實驗教學所使用之軟體為Geometer’s Sketchpad(GSP),實驗組為利用並發揮GSP動態幾何軟體之動態視覺化特性與潛能進行數學幾何教學之「動態多重」視覺表徵組;控制組則為以電腦做為靜態呈現幾何教材之工具而進行之「靜態多重」視覺表徵組。正式教學實驗為兩週共12節課,每節課45分鐘。此外,為更深入瞭解動態多重表徵對於學生在學習幾何的過程中(包括觀念理解、公式記憶與解題的思考策略)所產生的影響,針對動態多重表徵組之學生,每週進度結束後各進行一次訪談並針對學習歷程之學習單進行分析。
本研究研究工具包括視覺化能力測驗、數學態度量表、幾何單元成就測驗、半結構式訪談大綱與學習單。資料分析結果如下。
一、在數學學習成就方面,高視覺化能力的學生明顯適合於動態多重表徵的學習環境,且明顯不適合於靜態多重表徵的學習環境;低視覺化能力的學生明顯適合於靜態多重表徵組的學習環境。
二、在數學學習態度方面,低視覺化能力學生顯著適合於靜態多重表徵組的學習環境,而顯著不適合於動態多重表徵組的學習環境。經由教學實驗之後,所有學生在數學學習態度上皆有顯著提升。
三、動態多重表徵的學習環境有助於學生深入理解幾何觀念,快速記憶幾何觀念且具延宕效果,提供有效的解題策略,強烈吸引學生的注意力,同時改變學生對於數學只有「靜態」的看法,提高學習數學的興趣。
This research aimed to investigate the effects of two different types of visual representations (i.e., dynamic multiple representations and static multiple representations) on junior high school students’ academic performance on Geometry and attitudes towards Mathematics. This research further examined how individual’s visualization ability and measure times interactively influenced participants’ learning outcomes. Finally, this research explored the effects dynamic multiple representations enabled by dynamic geometry software (i.e., The Geometer’s Sketchpad, GSP ) had on students while learning geometry.
An unequal-group pre-post test quasi-experimental research method was adopted. 73 eighth-grade students in two classes from Tainan Municipal An-Nan Junior High School participated in the actual study. The experimental group (i.e., dynamic multiple representations group) received instruction highlighting on the various characteristics and potential of GSP while the control group (i.e., static multiple representations) was instructed in an environment where the computer merely served as a tool to statically present geometry materials. The study took place in twelve 45-minute instructional sessions in about two weeks. During the two-week experimental time, purposively selected students from the experimental group were interviewed by the researcher at the end of each week so as to understand the effects dynamic multiple representations had upon students while learning geometry, including their conceptual understanding, formula memorization, and thinking strategies involved in solving problems.
The instruments used in this study included Visualization Ability Assessment, Attitude toward Learning Mathematics Scale, posttest on geometry, semi-structured interview outline and worksheets. The results of this study were as follows:
1. In terms of academic achievement, students with high visualization ability were significantly suitable in the environment of dynamic multiple representations, but were not suitable in the environment of static multiple representations where students with low visualization ability were significantly suitable in the static multiple representations condition.
2. In terms of attitude toward mathematics, students with low visualization ability were significantly suitable in the environment of static multiple representations, but were not suitable in the dynamic multiple representations condition. All students improved their attitude toward mathematics after the study.
3. Integration of dynamic multiple representations while learning geometry helped students comprehend geometry concepts more deeply, and memorize geometry concepts more quickly and with delayed effect. Dynamic multiple representations also provided students with effective strategies for solving problems, strongly attracted their attention, changed their views that mathematics is merely “static,” and increased their interests in mathematics.
壹、中文部分
中小學生最怕數學最愛體育(1998)。教育資料文摘,42(5),191-192。
仁林文化主編(2004)。國中數學(第三冊)教師手冊-教學篇。台北:仁林文化。
王萬清(1986)。電腦輔助問題解決課程對兒童問題解決能力及程序思考能力之影響。國立臺灣師範大學輔導研究所碩士論文。
左台益、梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關性研究。師大學報:科學教育類,46(1,2),1-20。
李素卿(譯)(2003)。認知心理學。M. W. Eysenck & M. T. Keane著。台北:五南。
李偵生(2002)。發展數學科GSP教學模組之行動研究─以商高定理為例。國立高雄師範大學數學研究所碩士論文。
李雪莉。(2000)。教師運用資訊網路能力調查。天下雜誌,29,94-104。
何森豪(2001)。Van Hiele幾何發展水準之量化模式─以國小中高年級學生在四邊形概念之表現為例。測驗統計年刊,9,81-141。
吳鳳萍(2002)。探討動態幾何軟體活動設計對國小五年級學童在面積學習成效方面之影響。國立台北師範學院數理教育研究所碩士論文。
余酈惠(2003)。高雄市高職學生運用GSP軟體學習三角函數成效之研究。國立高雄師範大學數學研究所碩士論文。
林星秀(2001)。高雄市國二函數課程GSP輔助教學成效之研究。國立高雄師範大學數學研究所碩士論文。
林清山(譯)(1990)。教育心理學:認知取向。R. E. Mayer著。台北:遠流。
林裕雲(2002)。實施電腦LOGO程式設計教學對台灣國小學生解題能力之影響─國小六年級學生之個案研究。屏東師範學院數理教育研究所碩士論文。
康鳳梅(2002)。高工學生空間能力指標與量表建構之研究。(國科會專案研究計畫期中報告,NSC92-2516-S-003-007)。
康鳳梅、戴文雄、鍾瑞國(2004)。高工學生空間能力指標與量表建構之研究。(國科會專案研究計畫成果報告,NSC92-2516-S-003-019)。
許乃賜(2004)。動態幾何教學與傳統教學對國小五年級學童圓教學成效之研究。國立台北師範學院數理教育研究所碩士論文。
郭文金(1998)。國小五年級學生運用電腦軟體GSP學習比例問題成效之研究。國立高雄師範大學數學研究所碩士論文。
教育部(1998)。國民教育階段九年一貫課程總綱綱要。台北:教育部。
張秋男(2004)。近年來我國中、小學生數理科表現升?或降?-國際數學與科學教育成就趨勢調查結果。(國科會記者會新聞資料)。2004年12月15日,取自 http://www.math.ntnu.edu.tw/~tame/dynamicnews/TIMSS.pdf
梁勇能(2000)。動態幾何環境下,國二學生空間能力學習之研究。國立台灣師範大學數學研究所碩士論文。
張英傑、周菊美(譯)(2005)。J. A. Van De Walle著。中小學數學科教材教法。台北:五南。
陳英豪、吳裕益(2003)。測驗與評量。高雄:復文。
郭昭慧(2004)。國中三角幾何GSP輔助教學之學習成效研究。義守大學資訊管理學系碩士班碩士論文。
張春興(2002)。教育心理學:三化取向的理論與實踐。台北:東華。
張春興、林清山(1982)。教育心理學。台北:東華。
張殷榮(2004)。我國國中學生在TIMSS-R中數學學習成就研究。(國科會專題研究計畫成果報告,NSC92-2521-S-003-001)。
張富強(1992)。在LOGO環境中學習幾何之研究。國立彰化師範大學科學教育研究所碩士論文。
陳裕亮(2003)。高職廣義角三角函數單元GSP電腦輔助教材之設計與教學成效研究。國立高雄師範大學數學研究所碩士論文。
郭閔然(2002)。中等學校教師資訊素養與資訊融入教學之研究─以大高雄地區為例。義守大學資訊工程學系碩士論文。
陳義汶(2004)。南部地區國中數學科實施資訊融入教學的現況調查與楷模之特徵分析。(國科會專案研究計畫成果報告,NSC92-2521-S-165-001)。
崔夢萍(2001)。國小教師電腦融入教學態度及其相關因素之研究。台北市立師範學院學報,32,169-194。
曾千純(2002)。數學學習不利學生面積概念的診斷與補救教學。國立台南師範學院教師在職進修數學碩士學位班碩士論文。
黃文聖(2001)。國小學童在Logo學習環境中數學學習與解題之研究。國立新竹師範學院數理教育研究所碩士論文。
"幾何學"。大英百科全書。 2005年4月9日取自大英線上繁體中文版。
http://wordpedia.eb.com/tbol/article?i=029245
黃哲男(2002)。於動態幾何環境下國中生動態心像建構與幾何推理之研究。國立臺灣師範大學數學研究所碩士論文。
曾振家(2002)。國小五年級學生在動態多重表徵情境下建構分數加法概念之研究。國立臺南師範學院教師在職進修數學碩士學位班碩士論文。
楊晰勛(2000)。中文程式語言CLogo融入電腦與數學課程之研究。雲林科技大學電子工程與資訊工程技術研究所碩士論文。
壽大衛(2001)。建構資訊、教學創新之理念與行動。教師天地,112,14-22。
趙文敏(1992)。幾何學概論。台北:九章。
趙貞怡、劉傳璽(2004)。結構性LOGO環境對國小學童在角/旋轉認知及解決問題策略之影響。教育研究資訊,12(2),61-94。
蔡志仁(2000)。動態連結多重表徵視窗環境下橢圓學習之研究。國立臺灣師範大學數學研究所碩士論文。
鄭志明(2004)。高中廣義角三角函數課程使用GSP電腦輔助教學成效之研究。國立高雄師範大學數學系碩士論文。
謝哲仁、郭文金、黃玉玲(2003)。動態數學基本函數概念及其運算之創新設計與教學成效。美和技術學院學報,22(2),277-294。
戴錦秀(2002)。國小五年級學生使用電腦軟體GSP學習三角形面積成效之研究。國立高雄師範大學數學研究所碩士論文。
譚寧君(1993)。兒童的幾何觀─從van Hiele幾何思考的發展模式談起。國民教育,33(5,6),12-17。
貳、英文部分
Ainsworth, S. (1999). The functions of multiple representations. Computers &
Education, 33, 131-152.
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241.
Australian Education Council (1991). A National Statement on Mathematics for Australian School. A joint project of the States, Territories, and the Commonwealth of Australian, Australian Education Council and the Curriculum Corporation.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baker, P. R., & Belland, J. C. (1986). Developing Spatial Skills with ExperLOGO on the MacIntosh. Paper presented at the Great Lakes Conference of the Educational Computer Consortium of Ohio (Cleveland, OH, May 7-9, 1986).
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal of Research in Mathematics Education, 21(11), 47-60.
Battista, M. T., & Clements, D. H. (1991). Research into practice: Using spatial imagery in geometric reasoning. Arithmetic Teacher, 39(3), 18-21.
Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational Studies in Mathematics, 11, 257-269.
Bishop, A. J. (1983) Space and Geometry. In R. Lesh, & M. Landau (Eds.),
The acquisition of mathematical concepts and processes (pp. 176-204).
NY: Academic Press.
Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11(1), 7-16.
Boz, N. (2005). Dynamic visualization and software environments. The Turkish
Online Journal of Educational Technology, 4(1), 26-32.
Burns, B., & Hagerman, A. (1989). Computer experience, self-concept and problem-solving: The effects of LOGO on children's ideas of themselves as learners. Journal of Educational Computing Research, 5(2), 199-212.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. NY: Cambridge University Press.
Campbell, P.F., Fein, G.G., & Schwartz, S.S. (1991). The effects of Logo experience of first-grade children's ability to estimate distance. Journal of Educational Computing Research, 7(3), 331-349.
Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognitive and Instruction, 8(4), 293-332.
Choi-Koh, S. S. (1999). A student’s learning of geometry using the computer. The Journal of Educational Research, 92(5), 301-311.
Clements, D.H. (1991). Enhancement of creativity in computer environments. American Educational Research Journal, 28(1), 173-187.
Clements, D. H., & Battista, M.T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20(5), 450-467.
Clements, D. H., & Battista, M.T. (1990). The effects of Logo on children's conceptualizations of angle and polygons. Journal for Research in Mathematics Education, 21(5), 356-371.
Clements, D. H., Battista, M. T., Sarama, J., Swaminathan, S., & McMillen, S. (1997). Students’ development of length concepts in a Logo-based unit on geometric paths. Journal for Research in Mathematics Education, 28(1), 70-95.
Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. In M. M. Lindquist & A. P. Shulte (Eds.), Learning and Teaching Geometry: K-12 (pp. 1-16). Reston VA: National Council of Teachers Mathematics.
Crowley, M. L. (1990). Criterion-Reference reliability indices associated with the van Hiele geometry test. Journal for Research in Mathematics Education, 21(3), 238-241.
Dreyfus, T. (1995). Imagery for diagrams. In R.Sutherland, & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education, Vol. 138, pp. 3-19. NATO ASI Series, Berlin: Springer.
Dixon, J. K. (1997). Computer use and visualization in students’ construction of reflection and rotation concepts. School Science and Mathematics, 97(7), 352-358.
Downing, R. E. (2003). Individual differences in information seeking: The effects and interaction of spatial visualization and domain expertise. Unpublished doctoral dissertation, University of Missouri-Columbia. (UMI No. 3091918)
Drake, S. M. (1996). Guided imagery and education: Theory, practice and
experience. Journal of Mental Imagery, 20, 1-58.
Dreyfus, T. (1991). On the status of visual reasoning in mathematics and
mathematics education. In F. Furinghetti (Ed.), Proceedings of the 15th
PME Conference,Vol. 1, pp. 33-48. Genova: University de Genova.
Fennema, E. & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization and affective factors. American Educational Research Journal, 14(1), 184-206.
Fennema, E. and Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal of Research in Mathematics Education, 16(3), 184-206.
Fey, J. T. (Ed.). (1984). Computing and mathematics. Reston, VA: National Council of Teachers of Mathematics.
Gagne, E. D., Yekovich C. W., & Yekovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). New York: Harper Collins.
Geva, E., & Cohen, R. (1987). Transfer of spatial concepts from Logo to map-reading (Report No. Elementary and Early Childhood Education PS016554). Ontario, Canada: Ontario Dept. of Education, Toronto. (ERIC Document Reproduction Service No. ED288608)
Gorgrió, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics, 35, 207-231.
Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a
framework. In L. Puig and A. Gutiérrez (Eds.), Proceedings of the 20th
conference of the international group for the psychology of mathematics
education, Vol. 1(pp. 3-19). Valencia: Universidad de Valencia.
Hannafin, R. D. (2004). Achievement differences in structured versus unstructured instructional geometry programs. Educational Technology Research and Development, 52(1), 19-32.
Harel, I. (1990). Children as software designers: A constructionist approach for learning mathematics. Journal of Mathematical Behavior, 9, 3-93.
Hart, K. M. (1987). Practical work and formalization, too great a gap. Proceedings of the 11th international conference psychology of mathematics education. Montreal.
Hart, K. M., & Sinkinson, A. (1988). Practical work and formalization, too great a gap. Proceedings of the 12th international conference psychology of mathematics education. Veszperm.
Kaput, J. J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19-26). Hillsdale, NJ: Lawrence Erlbaum.
Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner, & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 167-194). Hillsdale, NJ: Lawrence Erlbaum.
Key Curriculum Press. (2002). Teaching mathematics with the Geometer’s
Sketchpad. Emeryville, CA: Author.
Key Curriculum Press Technologies. (2005). The Geometer’s Sketchpad product information. Retrieved from http://www.keypress.com/sketchpad/getting_started/product_info.php
Klotz, E. A. (1991). Visualization in geometry: A case study of a multimedia
mathematics education project. In W. Zimmermann and S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 95–104). Washington, DC: Mathematical Association of America.
Kwon, O. N., Kim, S. H., and Kim, Y. (2002). Enhancing spatial visualization
through virtual reality (VR) on the Web: Software design and impact analysis. Journal of Computers in Mathematics and Science Teaching, 21(1), 17-31.
Lean, G. A., & Clements, M. A. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12(1), 1-33.
Lehrer, R., Randle, L., & Sancilio L. (1988). Learning preproof geometry with Logo. Cognition and instruction, 6(2), 159-184.
Lesh, R., Landau, M., & Hamilton, E. (1983). Conceptual models in applied mathematical problem solving. In R. Lesh & M. Landau (Eds.), The acquisition of mathematical concepts and processes (pp. ). NY: Academic Press.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40).Hillsdale, NJ: Lawrence Erlbaum.
Liu, L. & Cummings, R. (2001). A learning model that stimulates geometric
thinking through use of PCLogo and Geometer’s Sketchpad. In Tooke, D. J. & Henderson, N. (Eds.), Using information technology in mathematics
education (pp. 85-104). NY: The Haworth Press.
Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of
Research in Science Teaching, 22(5), 395-405.
McGee, M. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.
Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.
Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87-125.
Nastasi, B.K., Clements, D.H., & Battista, M.T. (1990). Social-cognitive interaction, motivation, and cognitive growth in Logo programming and CAI problem solving environments. Journal of Educational Psychology, 82(1), 150-158.
National Council of Supervisors of Mathematics (1976). Position statements on basic skills. Mathematics Teacher, 71, (February 1978), 147-152.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics. (1998). Principles and standards for school mathematics: Discussion Draft. Reston, VA: NCTM.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics. (2003, October). The use of technology in the learning and teaching of mathematics. Retrieved May 5, 2006, from http://www.nctm.org/about/position_statements/position_statement_13.htm
Pandisco, E. A. (1994). Spatial visualization and mathematics achievement: A correlational study between mental rotation of objects and geometric problems. Unpublished doctoral dissertation, University of Taxes, Austin.
Poulin-Dubois, D., McGilly, C. A., & Schultz, T. R. (1989). Psychology of computer use: X. effect of learning Logo on children's problem-solving skills. Psychological Reports, 64(3), 1327-1337.
Presmeg, N. (1986). Visualization in high school mathematics. For the Learning of Mathematics, 6(3), 42-46.
Presmeg, N. (1989). Visualization in multicultural mathematics classrooms. Focus on Learning Problems in Mathematics, 11(1, 2), 17-24.
Presmeg, N. (1992). Prototypes, metaphors, metonymies and imaginative rationality in high school mathematics. Educational Studies in Mathematics, 23, 595-610.
Shah, P. & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125(1), 4-27.
Shama, G., & Dreyfus, T. (1994). Visual, algebraic and mixed strategies in visually presented linear programming problems. Educational Studies in Mathematics, 26, 45-70.
Shavalier, M. (2004). The effects of CAD-like software on the spatial ability of middle school students. Journal of Educational Computing Research, 31(1), 37-49.
Smit, S. (1998). An Introduction to geometry through shape, vision and position. Unpublished manuscript, University of Stellenbosch at Stellenbosch, South Africa.
Sutherland, R. (1989). Providing a computer based framework for algebraic thinking. Educational Studies in Mathematics, 20(3), 317-344.
Tall, D. O., & West, B. (1986). Graphic insight into calculus and differential equations. In A. G. Howson, & J. P. Kahane. (Eds.), The influence of computers and informatics on mathematics and its teaching (pp. 105-120). ICMI Study Series. Strasbourg: Cambridge University Press.
Tall, D. O. (1991). Intuition and rigour: The role of visualization in calculus. In W. Zimmermann and S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 105–120). Washington, DC: Mathematical Association of America.
Turner, S.V., & Land, M.L. (1988). Cognitive effects of a Logo-enriched mathematics program for middle school students. Journal of Educational Computing Research, 4(4), 443-452.
Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247-262.
Üstün, I., & Ubuz, B. (2004, July). Student’s development of geometrical concepts through a dynamic learning environment. Paper presented at the meeting of the 10th International Congress on Mathematical Education, Copenhagen, Denmark. [Topic Study Group TSG-16] Retrieved February 20, 2006, from http://www.icme-organisers.dk/tsg16/papers/Ubuz.TSG16.pdf
Van De Walle, J. A. (2001). Elementary and middle school mathematics:
Teaching developmentally (3rd ed.). NY: Longman.
Vasu, E. S. & Tyler, D. K. (1997). A comparison of the critical thinking skills and spatial ability of fifth grade children using simulation software or Logo. Journal of Computing in Childhood Education, 8(4), 345-363.
Waits, B. K., & Demana, F. (2000). Calculators in mathematics teaching and learning: Past, present, and future. In M. J. Burke and F. R. Curcio (Eds.), Learning mathematics for a new century: 2000 yearbook of the National Council of Teachers of Mathematics (pp. 22-31). Reston, VA: NCTM.
Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492.
Yakimanskaya, I. S. (1991). The development of spatial thinking in schoolchildren (R. H. Silverman, Trans.). (Vol. 3). Chicago: National Council of Teachers of Mathematics. (Original work published 1980)
Yerushalmy, M., & Chazan, D. (1990). Overcoming visual obstacles with the aid of the supposer. Educational Studies in Mathematics, 21, 199-219.
Zavotka, S. L. (1987). Three-dimensional computer animated graphics: A tool for spatial skill instruction. Educational Communication and Technology Journal, 35(3), 133-144.
Zazkis, R., Dubinsky, E. and Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students’ understanding of the group D4. Journal for Research in Mathematics Education, 27(4), 435-457.
Zimmermann,W. and Cunningham, S. (1991). Editor’s introduction: What is
mathematical visualization? In W. Zimmermann and S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 1–8). Washington, DC: Mathematical Association of America.