簡易檢索 / 詳目顯示

研究生: 何政翰
Ho, Cheng-Han
論文名稱: 利用兆赫電磁波實現揮發性氣體感測
Volatile Gases Detection Using Terahertz Electromagnetic Waves
指導教授: 呂佳諭
Lu, Ja-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 55
中文關鍵詞: 兆赫波分子感測孔洞結構反共振中空波導內視鏡
外文關鍵詞: THz wave, molecular sensing, porous structure, anti-resonant reflecting waveguide, endoscope
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兆赫波是一介於高頻微波與遠紅外光之間的電磁波,其頻率一般定義在0.1兆赫到10兆赫之間。還擁有一些其它電磁頻段所沒有的特殊性質,例如:可用在危險氣體、藥品、毒品,甚至是爆裂物......等有機物的檢測應用上,所以近年來利用兆赫波的分子感測和影像技術激起廣泛的研究。本論文則設計和製作各種不同多層孔洞堆疊結構元件,與利用兆赫波反共振中空波導為基礎之內視鏡實現揮發性氣體感測。
    我們使用親水性聚對苯二甲酸乙二酯( polyethylene terephthalate;PET)材料,多層堆疊具孔洞結構之PET薄膜,製作四種不同元件,用以感測揮發性氣體分子。根據兆赫波時域光譜儀所量測到的吸收率和等效折射率變化,來達到辨識不同種類、不同濃度、和相似氣體但依不同混合比例之揮發性氣體。本論文對不同元件結構進行氣體偵測之靈敏度探討。實驗結果顯示該親水性多層孔洞結構對丙酮具有特定辨識性(specific detection),且最佳偵測靈敏度發生在具最小微孔洞之均勻多層堆疊結構,其最低可偵測的丙酮氣體莫耳密度為0.07 nano-mole/mm3,相當於4.12 ppm。該靈敏度可以應用到臨床醫學的辨識酮酸中毒,以及工業環境安全檢測。
    另外,我們也利用以反共振中空波導為基礎之兆赫波內視鏡,成功辨識不同濃度之有機氣體分子。由於兆赫波在波導中的多重反射可以增加電磁波和待測樣品的作用長度,以及利用波導中之反共振模態,使得我們只要以一根30公分之玻璃管即可達到辨識微量揮發氣體。對於丙酮蒸氣,其最小可偵測的莫耳密度為0.07 nano-mole/mm3,相當於4.08 ppm;而對於氨氣,最小可偵測的莫耳密度為0.85 nano-mole/mm3,相當於29.95 ppm。並且在即時監控量測不同濃度之丙酮蒸氣實驗中,顯示該蒸氣偵測系統的反應時間介於300~800秒之間,並具有高度重複性。該系統對未來在臨床上人體之呼氣檢測、沼澤毒氣及危險氣體遙測具有相當的應用潛力。

    Terahertz (THz) wave is located between microwave and visible light and with frequency ranging from 0.1 THz to 10 THz. Based on the spectral fingerprints in this frequency range, various dangerous materials, such as organic vapors, drugs, poisons and explosives, with similar appearances can be directly identified without labeling process. Recently, THz technology grows rapidly and various THz applications have been extensively developed, which are attributed to the great advances of THz generation and detection techniques, especially in THz molecular sensing and bio-imaging. In this thesis, we designed different multi-layer porous stacked structures, and utilized THz anti-resonant reflecting hollow-core waveguide based endoscope to realize volatile gas sensing.
    We fabricated four kinds of multilayer-stacked porous structures using hydrophilic porous polyethylene terephthalate (PET) thin film for volatile gas sensing. Based on the variations of THz absorption coefficient and the effective refractive index measured by terahertz time-domain spectroscopy, we are able to successfully identify different kinds, concentrations and even different mixing ratio of volatile gases. In this thesis, we also explore the detection sensitivity under different geometric parameters of devices, such as thin-film-arrangement and pore size. The experimental results show that the demonstrated multilayer-stacked porous device enables to specific detection of acetone vapor, and the best detection sensitivity achieved 0.07 nano-mole/mm3, corresponding to 4.12 ppm. It occurs in the uniform-stacked porous device with pore size of 45μm. The results implies it is potentially applied to medical, industrial, and environmental gas detection.
    In addition, we also used the terahertz endoscope based the anti-resonant reflecting hollow-core waveguide to successfully identify different kinds and concentrations of volatile gases. Because multiple reflections of terahertz wave in the waveguide can increase the interaction length between electromagnetic waves and analytes, and use evanescent wave of anti-resonant modes in the waveguide to detect, allow us can achieve recognition trace volatile gases by a 30cm-long glass pipe. For acetone vapor, the minimum detectable molecular density can be achieved 0.07 nano-mole/mm3, corresponding to 4.08 ppm; while for ammonia vapor, the minimum detectable molecular density can be achieved 0.85 nano-mole/mm3, corresponding to 29.95 ppm. And in the real-time monitoring and measurement of different concentrations of acetone vapor experiments showed that the vapor detection system response time is less than 300 seconds, and has a high degree of repeatability. The system for the future of the human body in clinical breath testing, toxic gas in the swamp and dangerous gas remote sensing has considerable potential applications.

    Abstract......I 中文摘要......III 誌謝.......IV 目錄........V 圖目錄......VII 表目錄......XII 第一章 簡介......1 1-1 兆赫波.......1 1-2 呼氣檢測與疾病診斷.....2 1-3 論文架構.......3 第二章 利用多層堆疊微孔洞聚合物結構在兆赫波下實現氣體分子感測........5 2-1 簡介.......5 2-1-1 氣體分子感測技術.....5 2-1-2 多層堆疊微孔洞聚合物結構.....5 2-2 元件製備與實驗裝置.....6 2-2-1 元件設計、製作以及樣品製備...6 2-2-2 兆赫波時域光譜儀.....7 2-3 實驗結果與討論.....9 2-3-1 在週期性多層堆疊結構下之感測結果...9 2-3-2 均勻多層堆疊結構下之感測結果....23 第三章 利用反共振中空波導為基礎之兆赫波內視鏡實現微量氣體偵測.......34 3-1 簡介......34 3-1-1 內視鏡技術......34 3-1-2 反共振中空波導......35 3-2 實驗系統與元件架設....38 3-2-1 耿氏振盪器兆赫波系統....38 3-2-2 在微量氣體偵測情況下之量測架構設計..39 3-3 實驗結果與討論......40 3-3-1 微量氣體偵測之結果....40 3-3-2 動態反應偵測之結果....46 第四章 結論與展望.....49 參考文獻.......51

    1. A. G. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications, ” Physics in Medicine and Biology 47, 3679-3689 (2002).
    2. Michael J. Fitch, and Robert Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Technical Digest, Volume 25, Number 4 (2004).
    3. D. Dragoman, and M. Dragoman, “Terahertz fields and applications,” Progress in Quantum Electronics 28, 1-66 (2004).
    4. Masayoshi Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97-105 (2007).
    5. http://fir.u-fukui.ac.jp/thzlab/index_files/Eng_THz_TDS.htm.
    6. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Applied Physics B-Lasers and Optics 68, 1085-1094 (1999).
    7. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports on Progress in Physics 70, 1325-1379 (2007).
    8. Y. W. Huang, T. F. Tseng, C. C. Kuo, Y. J. Hwang, and C. K. Sun, “Fiber-based swept-source terahertz radar,” Optics Letters 35, 1344-1346 (2010).
    9. Wu Q, and Zhang XC, “Free-space electro-optic sample of terahertz beams,” Applied Physics Letters, Volume 67, Issue 24, December 11, 3523-3525 (1995).
    10. Bradley Ferguson, and Xi-Cheng Zhang, “Materials for terahertz science and technology,” Nature Materials 1, 26-33 (2002).
    11. Likhodii, S. S., Musa, K., and Cunnane, S. C., “Breath acetone as a measure of systemic ketosis assessed in a rat model of the ketogenic diet,” Clinical Chemistry, Vol. 48, p115 (2002).
    12. Makisimovich, N., Vorotyntesv, V., Nikitina, N., Kaskevich, O., Karabun, P., and Martynenko, F., “Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis,” Sensor & Actuators B, Vol. 419, p35 (1996).
    13. http://www.lgoods.com/ill/dm/dka.htm.
    14. Fleischer, M., Simon, E., Eva, R., Ulmer, H., Harbeck, M., Wandel, M., C. Fietzek, Weimar, U., and Meixner, H., “Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors,” Sensors & Actuators B, 245-249, 83 (2002).
    15. Natale, C. D., Macagnano, A., Martinelli, E., Paolesse, R., D’Arcangelo G., Roscioni C., Finazzi-Agro, A., and Amico, A. D., “Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors,” Biosensors and Bioelectronics, Vol. 18, p1209- 1218 (2003).
    16. Lin, Y. J., Guo, H. R., Chang, Y. H., Kao, M. T., Wang, H. H., and Hong, R. I., “Application of the electronic nose for uremia diagnosis,” Sensors & Actuators B, Vol. 76, p177-180 (2001).
    17. http://sa.ylib.com/MagCont.aspx?Unit=columns&id=385.(科學人2004年第24期2月號)
    18. http://www.accuspeedy.com.tw/L01_library_1/020_Biochem/040_alcohol.htm.
    19. http://www.iosh.gov.tw/Msds.aspx(物質安全資料表).
    20. C. H. Lai, B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Optics Express 18, 309-322 (2010).
    21. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters 34, 3457-3459 (2009).
    22. S. S. H., and C. P. Yu, “Air-Core Waveguides for Terahertz Transmission,” Asia Optical Fiber Communication and Optoelectronic Exhibition and Conference(AOE), Shanghai, China, October 30–November 02 (2008).
    23. J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, and C. K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Optics Express 16, 2494-2501 (2008).
    24. K. H. Oh, Naofumi Shimizu, Satoshi Kohjiro, Ken’ichi Kikuchi, Atsushi Wakatsuki, Naoya Kukutsu, and Yuichi Kado, “High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing,” Optics Express 18455,Vol. 17, No. 21, 12 October (2009).
    25. J. S. Melinger, Y. Yang, M. Mandeghar, A. Shutler, and D. Grischkowsky, “THz detection of small molecule vapors over long paths in the atmospheric transmission windows,” Proceeding of 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves.
    26. A. Benz, C. Deutsch, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors, 11, 6003 (2011).
    27. B. You, C.P. Yu, T.A. Liu, and J.L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides, ” Optics Express 20, 5858 (2012).
    28. H.J. Kim, Y.Y. Kim, K.W. Lee, and D.H. Ha, “Porous silicon layer for optical sensing of organic vapor,” Physica B 406, 1536 (2011).
    29. P. A. Snow, E. K. Squire, and P. St. J. Russell, “Vapor sensing using the optical properties of porous silicon Bragg mirrors, ” Journal of Applied Physics, Volume 86, Number 4, 15 August (1999).
    30. C. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84 (1977).
    31. D.H. Auston, “Picosecond optoelectronic switching andgating in silicon,” Appl. Phys. Lett. 26, 101 (1975).
    32. G. Mourou, C. Stancampiano, A. Austonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl.Phy. Lett., 39, 295 (1981).
    33. J.Z. Xin, K.L. Jim, J. Yang, X.J. Gong, L.Q. Chen, F. Gao, Y.H. Tsang , H.L.W. Chan, and C.W. Leung, “Strontium titanate/silicon-based terahertz photonic crystal multilayer stack,”Applied Phys A, 107:109–115 (2012).
    34. H.J. Kim, Y.Y. Kim, and K.W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensors and Actuators A 165, 276–279 (2011).
    35. Safety Management Services, Inc. “Data Guides”, July 1999.
    36. International Critical Tables, vol. 3, p290.
    37. http://bbs.hcbbs.com/thread-711570-1-1.html.
    38. Selected values from R. Tillner-Roth and D. G. Friend, J. Phys. Chem. Ref. Data 27:63 (1998).
    39. W. Shi, “Fingerprinting molecules based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source,” Laser Phys. Lett. 1, No. 11 , 560-564 (2004).
    40. H. Harde and J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A, 105, 6038-6047 (2001).
    41. Ralph D. Nelson. Jr., et al, “Selected values of electric dipole moments for molecules in the gas phase,” NSRDS-NBS 10, Issured September 1, (1967).
    42. Pranab Kumar Karmakar, “Microwave propagation and remote sensing: atmospheric influences with models and applications,” ISBN: 1439848998, p99-104 (2011).
    43. “Endoscopy,” (2010 ), http://en.wikipedia.org/wiki/Endoscopy.
    44. A. Yariv, Pochi Yeh, “Photonics optical electronics in modern commumications,” Six edition, Oxford, ISBN 978-0-19-517946-0, page 160-172 (2007).
    45. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Optics Letters 27, 1592-1594 (2002).
    46. N. M. Litchinitser, and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Applied Physics B-Lasers and Optics 81, 347-351 (2005).
    47. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Optics Express 12, 1540-1550 (2004).
    48. M. Cantin, C. Carignan, R. Cote, M. A. Duguay, R. Larose, P. Lebel, and F. Ouellette, “Remotely switched hollow-core antiresonant reflecting optical waveguide,” Optics Letters 16, 1738-1740 (1991).
    49. James W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics, ” Int. J. Infrared. Milli. 17, 1996-2034 (1996).
    50. F. A. Myers, J. McStay, and B. C. Taylor, “Variable-length Gunn oscillator,” Electronics Letters 4, 386-387 (1968).

    下載圖示 校內:2016-12-03公開
    校外:2016-12-03公開
    QR CODE