簡易檢索 / 詳目顯示

研究生: 張容銓
Chang, Long-Chain
論文名稱: 可適應於白天與夜晚不同照度下之人臉辨識系統
An Adaptive Illumination Day And Night Face Recognition System
指導教授: 何裕琨
Ho, Yu-Kun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 51
中文關鍵詞: 局部對比強化局部閥值主成份分析人臉辨識
外文關鍵詞: Principal Component Analysis, Face Recognition, Local Threshold, Local Contrast Enhancement
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人臉辨識是影像視覺中重要的研究領域,人臉辨識屬於非接觸性的機制,因此以人臉作為身分識別的安全監控技術已漸漸融入高科技的生活之中。然而光源是影響人臉辨識一個很重要的因素,因為同一張人臉在不同光源環境中會有很大的不同,因此在不同的光源環境之中白天或夜晚時能順利對不同照度之人臉影像,作出正確之判斷,是一個值得研究的課題。
    通常影像是由於光源照射在物體上的反射光所形成,其影像像素強度的不同則顯現出不同的顏色,或者顯現出不同的灰階分佈,因此對光源照射呈現不均勻的影像,本論文擬利用基於區塊為基礎的局部對比強化的演算法,來解決照度不同及光源不均勻的問題,以構成一可作居家出入門禁之人臉辨識系統。
    本論文所提出之可適應在不同照度下白天/夜晚之人臉辨識系統,首先對於輸入不同光照之影像,對人臉影像作局部對比強化(Local Contrast Enhancement)處理,主要是利用局部閥值(Local Threshold)保留低於閥值以下的重要灰階資訊,將高於閥值以上的灰階範圍給予刪剪,來作直方圖刪剪 (Histogram Clipping) 之處理,以得到人臉影像中重要的特徵資訊,然後再加上使用局部對比伸張強化的方法,得到一不受光照影響的人臉影像。以便在明暗不同的光照環境下,依然能夠清楚地擷取到人臉之特徵資訊。
    在人臉特徵擷取的方法上是利用主要成份分析(Principal Component Analysis, PCA)法, PCA分析法主要是將原影像資料利用特徵值(eigenvalue)之計算,得到特徵向量,以便在特徵空間作辨識。最後將取得的影像特徵值使用歐氏距離的方法,與人臉影像資料庫的特徵參數互相比對,進行人臉之辨識。
    此一可適應於白天/夜晚不同照度之人臉辨識系統,經實驗顯示,在不同光照強度下,對4個人臉影像,使用本論文所用之局部閥值經由直方圖刪剪處理,並且使用局部對比強化的方法,搭配主要成份分析(Principal Component Analysis,PCA) 特徵擷取的方法,證明能有效克服不同光源照度下之人臉辨識之困難,並提供有效之辨識率。

    Human face recognition, which is a non-contact mechanism, is an important research area in image vision, and safety monitoring skill by human face identification is becoming a part of high technology living. However, light source is an important factor affecting human face recognition which differs according to the variation of light source. Thus, to correctly obtain human face images in different light environment, for example day or night, without affecting the recognition of the human face image is a valuable subject.
    Usually images are formed by light reflected by objects. Different images pixels amplitude show different colors or different gray scale distribution, thus non-uniform images are presented. This paper is to use block based local contrast algorithm[9] to solve the problem of non-uniform light source, therefore a human face recognition system can be built as used in a house door monitor system.
    In human face recognition system proposed in this paper, firstly, for images under different light sources, human face images are processed by Local Contrast Enhancement. Local threshold method is used to reserve important gray scales information lower than threshold, and those gray scales higher than threshold are clipped by Histogram Clipping to acquire important feature information of human face images. Then local contrast extension and enhancement method is used to obtain human face images immune to light sources variation. As a result, in different light source environments, human face feature information can still be clearly obtained.
    Methods of fetching features of human face make use of Principal Component Analysis (PCA), The PCA method is mainly to get the eigenvalues and eigenvector. PCA dimensions of original image data are reduced and those image data are recognized in eigen space. Finally, these obtained eigenvalues are compared with eigen parameters stored in human images database by Euclid method to recognize human faces.
    The human face recognition system adaptive to day or night, through experiments of four human face images under different luminance, by local threshold method, Histogram Clipping method, local contrast enhancement method, and Principal Component Analysis features for recognition, It been proven effectively improves the difficult problems of human face recognition in different luminance environment. And has good recognition rate.

    第一章 緒論 1 第二章 相關背景 4 2.1 RGB轉YCbCr色彩空間 5 2.2局部閥值和直方圖刪剪(Local Threshold with Histogram Clipping) 5 2.3照明補償(illumination Compensation) 8 2.4局部對比強化法(Local Contrast Enhancement) 9 2.5仿射轉換(Affine Transform)和影像定位(Image Registration) 11 2.6 主要成份分析(Principal Component Analysis,PCA) 12 2.7相似性度量(Similar Measure) 15 第三章 可適應於白天與夜晚不同照度下之人臉辨識系統 17 3.1 RGB轉YCbCr色彩空間 20 3.2 局部對比強化(Local Contrast Enhancement) 20 3.2.1局部閥值(Local Threshold)和直方圖刪剪(Histogram Clipping) 21 3.2.2 以區塊為基礎的局部對比強化法 23 3.3仿射轉換(Affine Transform)和影像定位(Image Registration) 29 3.4 主要成份分析(Principal Component Analysis,PCA) 30 3.5 相似性度量(Similar Measure) 33 3.6 影像匹配 34 第四章 實驗結果與應用 35 4.1 局部閥值之實驗結果 35 4.2 比較人臉影像相似度在不同照度下使用主要成份分析 38 第五章 結論與未來展望 49 參考文獻 50

    [1] W. Niblack, “An introduction to digital image processing”, Englewood Cliffs, Prentice Hall, N.J., pp. 115–116, 1986. [2] Meng-Ling Feng and Yap-Peng Tan, “Contrast adaptive binarization of low quality document images”, IEICE Electronics Express, Vol.1, No.16, 501–506, 2004 [3] Ilya Blayvas,Alfred Bruckstein,Ron Kimmel “Efficient computation of adaptive threshold surfaces for image binarization”, Pattern Recognition 39(2006)89-101, Received 30 December 2004 [4] Faisal Shafaita, Daniel Keysersa, Thomas M. Breuelb, “Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images” [5] J. Sauvola and M. Pietikainen, “Adaptive document image binarization,” Pattern Recognition 33(2),pp. 225–236, 2000. [6] Hazım Kemal Ekenel, Rainer Stiefelhagen, “Analysis of Local Appearance-based Face Recognition: Effects of Feature Selection and Feature Normalization” Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, 2006 [7] Ronny Tjahyadi, Wanquan Liu, Svetha Venkatesh “Application of the DCT Energy Histogram for Face Recognition”,Submitted to the Proceedings of the 2nd International Conference on Information Technology for Application, 2004 [8] Ganhua Li, Xuanping Cai and Xianshuai Li, Yunhui Liu, “An Efficient Face Normalization Algorithm Based on Eyes Detection.”, International Conference on Intelligent Robots and Systems, October 9 - 15, 2006 [9] Xudong Xie, Kin-Man Lam, “Face recognition under varying illumination based on a 2D face shape model ” Pattern Recognition 38 (2005) 221 – 230, Received 17 November 2003; received in revised form 19 July2004; accepted 19 July2004 [10] Mi Young Nam, Phill Kyu Rhee, "Adaptive Feature Representation for Robust Face Recognition using Context-aware Approach",ICIC2005
    51
    [11] Xudong Xie; Kin-Man Lam, “An efficient illumination compensation scheme for face recognition.”, Page(s): 1240- 1243 Vol. 2,2004 8th International Conference on Control,Automation,Robotics and Vision Kunming,China,6-9th December 2004 [12] 林仲芬編譯,”影像辨認技術「第二版」” ,全華科技圖書股份有限公司,PP18-22,1995. [13] 連國珍,” 數位影像處理”,儒林圖書有限公司, 2004 [14] 繆紹綱, ”數位影像處理技術”, 東華書局, 2005 [15] 鍾國亮, 影像處理與電腦視覺, 第二版,東華書局, 台北, 2004 [16] Weilong Chen, W. Meng Joo Er Shiqian Wu, “Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain.”, 458. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 [17] 徐曉珮, 數位影像處理, 第一版,高立書局, 台北, 2005 [18] A. Capra, A. Castorina, S. Corchs, F. Gasparini and R. Schettini ,“Dynamic Range Optimization by Local Correction and Histogram Image Analysis”, accepted at the 2006 IEEE International Conference on Consumer Electronics, Las Vegas, USA, January 7-11, 2006; [19] Turk, M., Pentland, A.,“Eigenfaces for Recognition.” Journal of Cognitive Neuro-science, 3(1), pp.71-86. , 1991 [20] 羅竣威, 謝清祿 “三種主軸成份法於數位影像特徵擷取與判別之研究”, 2005 [21] Ramesh Jain, Rangachar Kasturi and Brain G. Schunck, “Machine Vision”, McGraw-Hill Book Co. 1995

    下載圖示 校內:2010-02-18公開
    校外:2010-02-18公開
    QR CODE