簡易檢索 / 詳目顯示

研究生: 呂俊毅
Lu, Chuan-I
論文名稱: 滲透蒸發技術應用於四氟丙醇溶液脫水之研究
Study on dehydration of TFP solutions by Pervaporation Process
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 脫水純化四氟丙醇滲透蒸發PVA/PAN複合膜
外文關鍵詞: pervaporation, tetrafloropropanol (TFP), dehydration, PVA/PAN composite membrane
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用滲透蒸發(Pervaporation, 簡稱PV)處理技術,配合四種商業化的滲透蒸發膜(S1、B1~B3膜)來進行四氟丙醇(Tetrafluoropropanol, TFP)溶液之脫水純化試驗。首先對此四種薄膜作材料鑑定,利用FTIR、XRD了解薄膜成份組成及化學構造,操作CAM及SEM對薄膜的表面性質及薄膜內部型態結構作一探討。而後進行四種薄膜對四氟丙醇有機水溶液的薄膜篩選,發現S1薄膜對四氟丙醇溶液有最佳分離效率,故選擇S1薄膜作為後續主要研究。進行操作溫度及進料濃度變因研究,探討對質傳通量(Ft)、分離係數(α)、滲透蒸發分離指數(PSI)以及對水質傳係數(Kw)的影響。實驗結果顯示,在溫度操作50~70℃、進料濃液約72.5~99wt%TFP間,S1薄膜對四氟丙醇溶液的分離係數約4~369、總質通量約為0.13~4.73 kg/m2.hr及PSI為12.54~90.54 kg/m2.hr。分離係數隨溫度的增加而下降;水質通量及TFP通量反之。水質傳係數Kw值隨溫度及含水率的增加而增加。
    此除之外,進一步討論S1薄膜在分離四氟丙醇水溶液的輸送現象,包括進料相邊界層阻力隨轉速器轉速的分佈情形,並討論轉速對濃度極化程度的影響。最後,藉由實驗結果的分析,對S1滲透蒸發膜進行效能上的評估,達到一般TFP溶劑商業規格需求。

    This study focus on the application of pervaporation on dehydration of TFP solution by using four kinds of membrane. At first, by using FTIR, XRD and CAM, SEM instruments, we can analysis composition and chemical structure of the membranes and superficial property and morphology of the membranes respectively. From membrane choosing, We find S1 membrane is better than the others because it has higher separation efficiency. So we take S1 membrane as subsequent study, and discuss the effect of temperature and feed concentration to separating efficiency, including flux (Ft), separation factor (α), pervaporation separation index (PSI) and mass-transfer coefficient (Kw). The results is revealed the separator factor is approximately 4~369; the total flux is about 0.13~4.73 kg/m2.hr ; the PSI value is about 12.54~90.54 kg/m2.hr in the temperature range between 50 to 70 degree of Celsius and the feed concentration of TFP range between 72.5 to 99 weight percentage. As the operating temperature increases, the separation factor decreases, but both water and TFP flux increase. Another, the mass-transfer coefficient increase by increasing temperature and water content.
    Furthermore, we also discuss the mass-transfer phenomenon in the S1 membrane, including the effect of agitator speed to the distribution of the resistance of feed phase and the extent of concentration polarization. Finally,we can attain the commercially class of TFP solution from the result analysis by using pervaporation process and S1 membrane.

    總目錄 中文摘要 ……………………………………………………………………… I 英文摘要 ……………………………………………………………………… II 總目錄 ………………………………………………………………………… Ⅲ 表目錄 ………………………………………………………………………… Ⅵ 圖目錄 ………………………………………………………………………… Ⅶ 符號表 ………………………………………………………………………… Ⅸ 第一章 緒論 ……………………………………………………………… 1 1-1 研究動機 ………………………………………………………… 1 1-2 研究內容與目的 ………………………………………………… 3 第二章 文獻回顧 ………………………………………………………… 5 2-1 有機溶劑純化回收方法簡介 …………………………………… 5 2-1-1 蒸餾 ……………………………………………………………… 5 2-1-2 萃取蒸餾 ………………………………………………………… 6 2-1-3 共沸蒸餾 ………………………………………………………… 7 2-1-4 超臨界流體萃取 ………………………………………………… 9 2-1-5 滲透蒸發 ………………………………………………………… 10 2-2 滲透蒸發技術簡介 ……………………………………………… 15 2-2-1 技術發展歷史 …………………………………………………… 15 2-2-2 技術特性 ………………………………………………………… 16 2-2-3 技術原理簡介 …………………………………………………… 19 2-3 薄膜分離程序 …………………………………………………… 26 2-3-1 薄膜簡介 ………………………………………………………… 28 2-4 薄膜蒸發的應用 ………………………………………………… 30 2-5 滲透蒸發的其他程序結合 ……………………………………… 40 第三章 實驗部份 ………………………………………………………… 45 3-1 實驗儀器 ………………………………………………………… 45 3-2 實驗藥品材料 …………………………………………………… 46 3-3 實驗架構 ………………………………………………………… 47 3-4 實驗步驟 ………………………………………………………… 48 3-4-1 薄膜篩選 ………………………………………………………… 48 3-4-2 純化有機溶劑 ……………………………………… 48 3-4-3 不同有機溶劑濃度的密度求法 ………………………………… 49 3-4-4 實驗裝置圖 ……………………………………………………… 49 3-5 儀器分析 ………………………………………………………… 50 3-5-1 水份分析儀(KF) ………………………………………………… 51 3-5-2 氣相層析儀(GC) ………………………………………………… 51 3-5-3 掃描式電子顯微鏡(SEM) ……………………………………… 53 3-5-4 接觸角測試(CAM) ……………………………………………… 53 3-5-5 廣角X-ray繞射儀(WAXRD) ……………………………………… 53 3-5-6 反射式紅外線光譜儀(ATR-IR) ………………………………… 53 第四章 結果與討論 ……………………………………………………… 54 4-1 薄膜鑑定 ………………………………………………………… 54 4-1-1 薄膜表面官能機探討 ……………………………… 54 4-1-2 薄膜結構型態觀察 ……………………………………………… 57 4-1-3 廣角XRD(X-ray diffraction) ………………………………… 62 4-1-4 接觸角分析 ……………………………………………………… 63 4-2 S/V比值影響 ……………………………………………………… 64 4-3 薄膜篩選 ………………………………………………………… 66 4-4 轉速器轉速對提濃速率及滲透通量的影響 …………………… 72 4-5 進料含水率對質傳通量和分離係數的影響 …………………… 75 4-6 溫度對質傳通量、分離係數及回收率的影響 ………………… 78 4-7 PSI值的探討 …………………………………………………… 89 4-8 活化能值的探討 ………………………………………………… 92 4-9 轉速對水質傳係數Kw及質傳阻力的影響 ……………………… 97 4-9-1 滲透端壓力對水質傳係數與質傳阻力的影響 ………………… 103 4-9-2 轉速對進料相傳係數kwl及進料相阻力的影響 ………………… 105 4-9-3 轉速對濃度極化程度的影響 …………………………………… 110 第五章 結論 ……………………………………………………………… 112 建議 ………………………………………………………………………… 114 參考文獻 ……………………………………………………………………… 116 表目錄 表2-1 一般常見的有機物與水產生共沸點的共沸組 ………………… 6 表2-2 薄膜分離程序的發展 …………………………………………… 16 表2-3 日本Ohgaki廠PV技術與共沸蒸餾技術回收IPA操作成本比較 … 17 表2-4 各種薄膜分離程序所牽涉到的相變化以及趨動力 …………… 27 表2-5 各種分離程序的分離原理依據 ………………………………… 28 表2-6 不同文獻針對不同有機物微量水脫除的比較 ………………… 38 表2-7 整合流程應用案例的經濟上的比較 …………………………… 42 表2-8 整合流程應用案例的處理程序、應用方式及薄膜特性 ……… 43 表4-1 薄膜特性峰表現 (S1、B1、B2、B3) …………………………… 56 表4-2 四種薄膜的緻密分離層厚度 …………………………………… 62 表4-3 四種薄膜的對水的接觸角 ……………………………………… 64 表4-4 不同溫度下的Kw及KT值 ………………………………………… 78 表4-5 S1薄膜分離四氟丙醇溶液的活化能 …………………………… 93 表4-6 不同薄膜分離四氟丙醇溶液的活化能 ………………………… 97 表4-7 不同攪拌棒轉速下不同進料濃度的對水質傳係數及質傳阻力… 98 表4-8 不同攪拌棒轉速下不同進料濃度的對TFP質傳係數及質傳阻力 99 表4-9 不同滲透端壓力在不同進料濃度對水質傳係數及質傳阻力…… 103 圖目錄 圖2-1 共沸蒸餾塔示意圖 ……………………………………………… 8 圖2-2 有機物的處理方法和其適用範圍 ……………………………… 14 圖2-3 Solution-Diffusion Model …………………………………… 19 圖2-4 依膜親疏水性來分類之滲透蒸發技術及其應用範圍 ………… 21 圖2-5 滲透蒸發分離示意圖 …………………………………………… 23 圖2-6 薄膜橫切面結構的型態圖 ……………………………………… 29 圖2-7 蒸餾/滲透蒸發整合流程應用於IPA製程 ……………………… 40 圖2-8 利用蒸餾-滲透蒸發整合流程乙醇製程 ………………………… 41 圖3-1 實驗架構圖 ……………………………………………………… 47 圖3-2 50℃下不同進料TFP濃度的密度 ………………………………… 49 圖3-3 滲透蒸發裝置圖 ………………………………………………… 50 圖3-4 標準液的GC圖 …………………………………………………… 52 圖3-5 TFP溶液內差法校正線 …………………………………………… 52 圖4-1 不同薄膜的紅外線光譜圖 ……………………………………… 55 圖4-2 B1薄膜表面、底面及截面的SEM圖 ……………………………… 58 圖4-3 B2薄膜表面、底面及截面的SEM圖 ……………………………… 59 圖4-4 B3薄膜表面、底面及截面的SEM圖 ……………………………… 60 圖4-5 S1薄膜表面、底面及截面的SEM圖 ……………………………… 61 圖4-6 四種薄膜表面的XRD圖譜 ………………………………………… 63 圖4-7 B3 mem S/V比值下反應時間與進料端濃度變化關係圖 ……… 65 圖4-8 不同薄膜的進料濃度對時間變化的關係圖 …………………… 67 圖4.9 不同薄膜分離係數與質傳通量隨進料端濃度變化關係圖 …… 68 圖4-10 不同薄膜PSI指數隨進料端濃度變化關係圖 ………………… 70 圖4-11 不同薄膜TFP回收率隨進料端濃度變化關係圖 ………………… 71 圖4-12 不同攪拌速率對提濃速率的影響 ……………………………… 73 圖4-13 不同攪拌速率對水滲透通量的關係圖 ………………………… 74 圖4-14 四氟丙醇水溶液的質傳通量及分離係數對進料端濃度的關係圖 76 圖4-15 乙醇水溶液的質傳通量及分離係數進料端濃度的關係圖 …… 77 圖4-16 四氟丙醇水溶液的分離係數對進料端濃度的關係圖 ………… 80 圖4-17 乙醇水溶液的分離係數對進料端濃度的關係圖 ……………… 81 圖4-18 四氟丙醇水溶液的質傳通量對進料端濃度的關係圖 ………… 82 圖4-19 乙醇水溶液的質傳通量對進料端濃度的關係圖 ……………… 83 圖4-20 四氟丙醇水溶液的進料濃度對時間的關係圖 ………………… 85 圖4-21 乙醇水溶液的進料濃度對時間的關係圖 ……………………… 86 圖4-22 不同溫度下四氟丙醇醇水溶液的回收率對進料端濃度的關係圖 87 圖4-23 不同溫度下乙醇水溶液的回收率對進料端濃度的關係圖 …… 88 圖4-24 四氟丙醇水溶液的PSI指數對進料端濃度的關係圖 ………… 90 圖4-25 乙醇水溶液的PSI指數對進料端濃度的關係圖 ……………… 91 圖4-26 S1薄膜分離四氟丙醇水溶液的Arrhenius equation關係圖 … 94 圖4-27 B1薄膜分離四氟丙醇水溶液的Arrhenius equation關係圖 … 95 圖4-28 B2薄膜分離四氟丙醇水溶液的Arrhenius equation關係圖 … 96 圖4-29 攪拌棒轉速對不同進料濃度下的Kw值影響 …………………… 100 圖4-30 攪拌棒轉速對不同進料濃度下對水總質傳阻力影響 ………… 101 圖4-31 不同攪拌速率對TFP滲透通量的關係圖 ……………………… 102 圖4-32 不同滲透端壓力對水滲透通量的關係圖 ……………………… 104 圖4-33 不同進料濃度下對水質傳阻力1/Kw與1/NRe0.5的關係圖 …… 106 圖4-34 不同進料濃度下進料相質傳係數kwl與雷諾數及轉速的關係圖 108 圖4-35 不同進料濃度進料相對水質傳阻力1/kwl與轉速的關係圖 … 109 圖4-36 不同進料濃度下濃度極化程度與轉速的關係圖 ……………… 111

    Ahn, S. M., Ha, J. W., Kim, J. H., Lee, Y. T. and Lee, S. B., Pervaporation of fluoroethanol/water, and methacrylic acid / water mixtures through PVA composite membranes, Journal of Membrane Science, 247, 51-57, (2005).
    Alghezawi, N., Sanlı, O., Aras, L., and Asman G., Separation of acetic acid–water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation, Chemical Engineering and Processing, 44, 51-58, (2005).
    Bangxiao, C., Li, Y., Hailin, Y., and Congjie G., Effect of separation layer in pervaporation composite membrane for MTBE / MeOH separation, Journal of Membrane Science, 194, 151-156, (2001).
    Burshe, M. C., Sawant, S. B., Joshi, J. B., and Pangarkar, V. G., Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifunctional crosslinking agents, Separation and Purification Technology, 12, 145-156, (1997).
    Bagnell, L., Cavell, K., Hodges, A. M., Mau, A. W. H., and Seen, A. J., Use of catalytically active pervaporation membranes in esterification reactions to simultaneously increase product yield, membrane permselectivity and flux, Journal of Membrane Science, 85, 291, (1994).
    Chapmana, P. D., Tan, X., Livingston, A. G., Lia, K., and Oliveira, T., Dehydration of tetrahydrofuran by pervaporationusing a composite membrane, Journal of Membrane Science, 268, 13-19, (2006).
    Dhanuja, G., Smitha, B., and Sridhar, S., Pervaporation of isopropanol–water mixtures through polyion complex membranes, Separation and Purification Technology, 44 , 130-138, (2005).
    Doguparthy, S. P., Pervaporation of aqueous alcohol mixtures through a photopolymerised composite membrane, Journal of Membrane Science, 185, 201-205, (2001).
    Feng, X., and Huang, R. Y. M., Liquid Separation by Membrane Pervaporation: A Review, Industrial & Engineering Chemistry Research, 36, 1048-1066, (1997).
    Feng, X., and Huang, R. Y. M., Estimation of activation energy for permeation in pervaporation Processes, Journal of Membrane Science, 118, 127-131, (1996).
    Friedl, A., Qureshi, N., and Maddox, I. S., Continuous acetonebutanol- ethanol (ABE) fermentation using immobilized cells of clostridium acetobutylicum in a packed-bed reactor and integration with product removal by pervaporation, Biotechnology and Bioengineering, 38, 518, (1991).
    Guan, H. M., Chunga, T. S., Huanga, Z., Chnga, M. L., and Kulprathipanja S., Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture, Journal of Membrane Science, 268, 113-122, (2006).
    G’Villaluenga, J. P. and Mohammadi, T. A., A review on the separation of benzene / cyclohexane mixtures by pervaporation processes, Journal of Membrane Science, 169, 159-174, (2000).
    Guerreri, G., Membrane alcohol separation process-integrated pervaporation and fractional distillation, Industrial & Engineering Chemistry Research, 70, 501-508, (1992).
    Gref, R., Nguyen, Q. T., and Neel, J., Influence of membrane properties on system performance in pervaporation under concentration polarization regime, Separation and Purification Technology, 27, 467, (1992).
    Hsueh, C. L., Kuo, J. F., Huang, Y. H., Wang, C. C., and Chen, C. Y. Separation of ethanol–water solution by poly(acrylonitrile-co-acrylic acid) membranes, Separation and Purification Technology, 41, 39-47(2005).
    Hasanoglu, A., Salt, Y., Keleser, S., Ozkan, S., and Dincer, S., Pervaporation separation of separation of ethyl actate-ethanol binary mixtures using polydimethylsiloxane membrane, Chemical Engineering and Processing, 44, 375-381, (2005).
    Huang, J., Tu, M. L., Wang, Y. C., Li, C. L., Lee, K. R., and Lai, J. Y. Dehydration of acetic acid by pervaporation through an asymmetric polycarbonate membrane, European Polymer Journal, 37, 527-534, (2001).
    Huang, R. Y. M., and Feng, X., Dehydration of isopropanol by pervaporation using aromatic polyetherimide membranes, Separation and Purification Technology, 28, 2035, (1993).
    Huang, R. Y. M., and Yeom, C. K., Pervaporation separation of aqueous mixtures using crosslinked poly(vinyl alcohol)., 2. Permeation of ethanol-water mixtures, Journal of Membrane Science, 51, 273, (1990).
    Izak, P., Mateus, N. M. M., Afonso, C. A. M., and Crespo, J. G. Enhanced esterification conversion in a room temperature ionic liquid by Integrated water removal with pervaporation, Separation and Purification Technology, 41, 141-145, (2005).
    Jiang, J. S., Greenberg, D. B., and Fried, J. R., Pervaporation of methanol from a triglyme solution using a Nafion membrane: Concentration polarization, Journal of Membrane Science, 132, 263-271, (1997).
    Kusumocahyo, S. P., Kanamori, Toshiyuki., Iwatsubo, T., Sumaru, K., and Shinbo, T., Development of polyion complex membranes based on cellulose acetate modified by oxygen plasma treatment for pervaporation, Journal of Membrane Science, 208, 223-231, (2005).
    Kittur, A. A., Kulkarni, S. S., Aralaguppi, M. I., and Kariduraganavar, M. Y., Preparation of Zeolite-Incorporated Poly(dimethyl siloxane) Membranes for the Pervaporation Separation of Isopropyl Alcohol / Water Mixtures, Journal of Applied Polymer Science, 96, 1377-1387, (2005).
    Kariduraganavar, M. Y., Kulkarni, S. S., and Kittur, A. A., Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes, Journal of Membrane Science, 246, 83-93, (2005).
    Karlsson, H. O. E., and Tragardh, G., Aroma compound recovery with pervaporation, Journal of Membrane Science, 81, 163, (1993).
    Liu, R., Qiao, X., and Chung, T. S., The development of high performance P84 co-polyimide hollowfibers for ervaporation dehydration of isopropanol, Chemical Engineering Science, 60, 6674-6686, (2005).
    Liua, Y. L., Su, Y. H., Lee, K. R., and Lai, J. Y., Crosslinked organic–inorganic hybrid chitosan membranesfor pervaporation dehydration of isopropanol–water mixtures with a long-term stability, Journal of Membrane Science, 251, 233-238, (2005).
    Li, J., Chen, C., Han, B., Peng, Y., Zou, J., and Jiang, W., Laboratory and pilot-scale study on dehydration of benzene by pervaporation, Journal of Membrane Science, 203, 127-136, (2002).
    Lipnizki, F., Field, R.W., and Ten, P. K., Pervaporation-based hybrid process: a review of process design, application and economics, Journal of Membrane Science, 153, 183-210, (1999).
    Lipnizki, F., Organophilic pervaporation: prospects and performance, Chemical Engineering Journal., 73, 113-129, (1999).
    Lee, C. H., and Hong, W. H., Influence of different degree of hydrolysis of poly(vinyl alcohol) membrane on transport properties in pervaporation of IPA/water mixtures, Journal of Membrane Science, 135, 187-193, (1997).
    Lai, J. Y., Tseng, C. W., and Lee, K. R., Plasma Graft Polymerization Membrane of Acrylamide for Pervaporation Separation of Aqueous Alcohol Mixtures, Journal of Applied Polymer Science, 61, 307-313, (1996).
    Nuran Isıklan, and Oya Sanlı, Separation characteristics of acetic acid–water mixture es by pervaporation using poly(vinyl alcohol) membranes modified with malic acid, Chemical Engineering and Processing, 44, 1019-1027, (2005).
    Naidu, B. V. K., K’Rao, K. S. V., and Aminabhavi, T. M., Pervaporation separation of water +1,4-dioxane and water + tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethyl-cellulose–A comparative study, Journal of Membrane Science, 260, 131-141, (2005).
    Neto, J. M., and Pinho, M. N., Mass transfer modelling for solvent dehydration by pervaporation, Separation and Purification Technology, 18, 151-161, (2000).
    Nakagawa, K., and Matsuo, M., Process for producing ether compounds, U.S. Patent, 5, 292, 963, (1994).
    Okada, T., and Matsuura, T. A., New transport model for pervaporation, Journal of Membrane Science, 59, 133, (1991).
    Ohshima, T., Miyata, T., Uragami, T., and Berghmens, H., Cross-linked smart poly(dimethylsiloxane) membranes for removal of volatile organic compounds in water, Journal of Membrane Science, 739 , 47-55, (2005).
    Ping, Z., Cordierite-supported ZSM-5 membrane: Preparation and pervaporation properties in the dehydration of water–alcohol mixture, Separation and Purification Technology, 44, 266-270, (2005).
    Praptowidodo, V. S., Influence of swelling on water transport through PVA-based membrane, Journal of Molecular Structure, 739, 207-212, (2005).
    Park, H. C., Ramaker, N. E., Mulder, M. H. V., and Smolders, C. A., Separation of MTBE-methanol mixtures by pervaporation, Separation and Purification Technology, 30, 419, (1995).
    Psaume, R., Aptel, P., Aurelle, Y. Mora, J. C., and Bersillon, J. L., Pervaporation: importance of concentration polarization in the extraction of trace organics from water, Journal of Membrane Science, 36, 373, (1988).
    Qiao, X., Chung, T. S., Guo, W. F., Matsuura, T., and Teoh, M. M., Dehydration of isopropanol and its comparison with dehydration of butanol isomers from thermodynamic and molecular aspects, Journal of Membrane Science, 252, 37-49, (2005).
    Ramadan, A., Gyula V., and Erika, B. M., Isopropanol dehydration by pervaporation, Chemical Engineering and Processing, 38, 149-155, (1999).
    Shao, P., Huang, R.Y.M., Feng, X., Anderson, W., Pal, R., and Burns, C. M., Composite membranes with an integrated skin layer: preparation, structural characteristics and pervaporation performance, Journal of Membrane Science, 254, 1-11, (2005).
    Sommer, S., and Melin, Thomas. Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1: Dehydration of solvents, Chemical Engineering Science, 60, 4509-4523, (2005).
    Smitha, B., Suhanya, D. Sridhar, S., and Ramakrishna, M., Separation of organic-organic mixtures by pervaporation-a review, Journal of Membrane Science, 241, 1-21, (2004).
    Semenova, S. I., Ohya, H., and Soontarapa, K., Hydrophilic membranes for pervaporation: An analytical review, Desalination, 110, 251-286, (1997).
    Spitzn, J. W. F., Pervaporation: Membranes and models for for Dehydration of ethanol, Ph D dissertation, Twente University, (1988).
    Tsai, H. A., Ciou, Y. S., Hu, C. C., Lee, K. R., Yu, D. G., and Lai, J. Y., Heat treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes, Journal of Membrane Science, 255, 33-47, (2005).
    Tsai, H. A., Chen, H. C., Chou, W. L., Lee, K. R., Yang, M. C., and Lai, J. Y., Pervaporation of Water / Alcohol Mixtures Through Chitosan / Cellulose Acetate Composite Hollow-Fiber Membranes, Journal of Applied Polymer Science, 94, 1562-1568, (2004).
    Tulbentci, N. D. S., Pervaporation of MTBE / methanol mixtures through PVA membranes, Desalination, 160, 263-270, (2004).
    Tatiana, G. L., Edwards, E., Lobiundo, G., and Dos’S, L. F., Dehydration of water / t-butanol / mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes, Journal of Membrane Science, 197, 309-319, (2002).
    Ten, P. K., and Field, R. W., Organophilic pervaporation: an engineering science analysis of component transport and the classification of behaviour with reference to the effect of permeate pressure, Chemical Engineering Science, 55, 1425-1445, (2000).
    Tusel, G. F., and Ballweg, A., Method and apparatus for dehydrating mixtures of organic liquids and water, US Patent, 4, 405 , 409, (1983).
    Upadhyay, D. J., and Bhat ,N. V., Separation of azeotropic mixture using modified PVA membrane, Journal of Membrane Science, 255, 181-186, (2005).
    Uragami, T., Katayama, T., Miyata, T., Tamura, H., Shiraiwa, T., and Higuch, A., Dehydration of an Ethanol / Water Azeotrope by Novel Organic-Inorganic Hybrid Membranes Based on Quaternized Chitosan and Tetraethoxysilane, Biomacromolecules, 5, 1567-1574, (2004).
    Uragami, T., Okazaki, K., Matsugi, H., and Miyata, T., Structure and Permeation Characteristics of an Membranes Composed of Poly(vinyl alcohol) and Tetraethoxysilane, Macromolecules, 35, 9156-9163, (2002).
    Van Baelen, D., Van der Bruggen, B., Van den Dungen, K., Degreve, J., and Vandecasteele, C., Pervaporation of water-alcohol mixtures and acetic acid-water mixtures, Chemical Engineering Science, 60, 1583-1590, (2005).Villaluenga, J.P.G., and Mohammadi, A. T., A review on the separation of Benzene / cyclohexane mixtures by pervaporation processes,Journal of Membrane Science, 169, 159-174, (2000).
    Vrana, D. L., Meagher, M. M., and Hutkinsand, R. W., Duffield, B., Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes, Separation and Purification Technology, 28, 2167, (1993).
    Wijmans, J. G., and Baker, R. W., The solution-diffusion model: a review, Journal of Membrane Science, 107, 1-21, (1995).
    Yu, J., Lee, C. H., and Hong, W. H., Performances of crosslinked asymmetric poly(vinyl alcohol) membranes for isopropanol dehydration by pervaporation, Chemical Engineering and Processing, 41, 693-698, (2002).
    Yeom, C. K., and Lee, K. H., Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membrane crosslinled with glutaraldehyde, Journal of Membrane Science, 109, 257-265, (1996). Zhou, L., Wang, T., Nguyen, Q. T., Li, J., Long, Y., Yu, J., Lee, C. H., and Hong, W. H., Performances of crosslinked asymmetric poly(vinyl alcohol) membrane for isopropanol dehydration by pervaporation, Chemical Engineering Science, 41, 693-698, (2002).Tu, C. Y., Liu Y. L., Lee K. R., and Lai, J.Y., Hydrophilic surface-grafted poly(tetrafluoroethylene) membranes using in pervaporation dehydration process, Journal of Membrane Science, 274, 47-55,(2006).羅嘉豪,四乙氧基矽烷/聚碳酸酯電漿披覆膜應用於滲透蒸發分離四氟丙醇水溶液,中原大學化學工程研究所碩士論文,(2005)。陳翠仙,滲透蒸發和蒸汽滲透,膜分離技術與應用科學,142-145,(2004)。蔡易書,新型聚醯亞胺膜應用在滲透蒸發程序分離醇類水溶液,中原大學化學工程研究所碩士論文,(2002)。黃耀輝,高分子固定化液膜分離氯化砷水溶液之研究,國立成功大學化學工程研究所碩士論文,(1986) 。

    下載圖示 校內:2007-07-24公開
    校外:2007-07-24公開
    QR CODE