| 研究生: |
劉瑋群 Liu, Wei-Chun |
|---|---|
| 論文名稱: |
探討超氧化物歧化酶 1 抑制劑-四硫代鉬酸膽鹼作為乳癌用藥的可行性 Investigation on the possibility of using the superoxide dismutase 1 inhibitor, tetrathiomolybdate, as a therapeutic agent for breast cancer |
| 指導教授: |
張雋曦
Cheung, Chun Hei Antonio |
| 共同指導教授: |
簡偉明
Kan, Wai Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 乳腺癌 、超氧化物歧化酶 1 、ATN-224 、活性氧 、次世代定序 |
| 外文關鍵詞: | Breast cancer, SOD1, ATN-224, ROS, NGS |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前的研究指出,超氧化物歧化酶[Cu-Zn](SOD1)的過度表達與乳腺癌患者的較差預後有相關。因此,SOD1被認為是治療乳腺癌的潛在標靶分子。四硫代鉬酸膽鹼(ATN-224)是臨床上用於治療威爾遜氏病的銅螯合劑。 ATN-224通過抑制SOD1活性誘導癌細胞死亡,SOD1是一個重要的抗氧化酶。儘管ATN-224目前正在癌症患者中進行臨床試驗,其抗癌的分子作用機制尚不清楚,目前認為ATN-224會藉由抑制血管新生以抑制腫瘤生長。但是ATN-224是否可用於治療不同乳腺癌亞型尚不清楚,在我們研究中,我們評估了ATN-224在不同乳腺癌亞型中的抗癌效果和其作用機制。
在本篇的研究中,我們通過分析線上的臨床數據發現,SOD1的高表現量與乳腺癌患者較差的總體生存率和無復發生存率相關。有趣的是,MTT細胞存活率測定的結果表明在三陰性亞型的MDA-MB-231與MDA-MB-453(三陰性亞型)細胞中表現出最佳的效力在本篇所使用的四種乳腺癌細胞中(即MDA-MB-231,MDA-MB-453,MCF-7(管狀A型),SK-BR-3(富含HER2亞型)。令人驚訝的是,儘管ATN-224抑制了MDA-MB-231和MCF-7細胞中SOD1的活性,但它僅增加了MDA-MB-231細胞中的細胞ROS水平。為了研究ATN-224在MDA-MB-231細胞中的作用分子機制,我們進行轉錄組的分析(mRNAseq)。對鑑定出的差異表達基因(DEGs)進行KEGG和GO分析和西方墨點法分析,結果發現ATN-224激活p38-p53-p21信號傳導途徑,並誘導MDA-MB-231和MCF-7細胞衰老(Cellular senescence)。 ATN-224還下調抗凋亡分子和促癌基因存活素(Survivin)的表達,並誘導乳腺癌細胞的凋亡。令人驚訝地是ATN-224上調雌激素受體陽性(ER+)MCF-7細胞中磷酸化HER2的表達,但是下調雌激素受體陰性MDA-MB-231細胞中磷酸化HER2的表達。此外,需要更高濃度的ATN-224來抑制MCF-7細胞中SOD1的總細胞活性,已知它與MDA-MB-231細胞相比具有更高的SOD1活性。
此篇的研究結論是我們證明了ATN-224在不同的乳腺癌細胞中表現出不同的抗癌效果和分子作用機制。本研究的發現表明,ATN-224可能更有效地用於治療三陰性乳腺癌。了解ATN-224在不同乳腺癌細胞中的不同分子作用機制可為將來選擇最適合乳腺癌組合治療藥物提供重要信息。
Previous studies revealed that overexpression of SOD1 is positively correlated with poorer prognosis in breast cancer patients. Therefore, SOD1 was suggested as a potential target for breast cancer treatment. Tetrathiomolybdate (ATN-224) is a copper chelator clinically used for the treatment of Wilson's Disease. ATN-224 can induce cancer cell death through targeting Superoxide dismutase [Cu-Zn] (SOD1), which is an important anti-oxidant enzyme. Despite ATN-224 is currently undergoing clinical trials in cancer patients; its effects and the molecular mechanism of action on cancer cells are still unclear, as the tumor targeting effect of ATN-224 is believed to be related to its anti-angiogenic property. It is also unclear on whether ATN-224 is of potential on treating a specific breast cancer subtype. In this study, we evaluated the potency and investigated the mechanism of action of ATN-224 in different breast cancer subtypes.
In the current study, we found that high expression level of SOD1 is correlated with poorer overall survival and recurrence-free survival in breast cancer patients by analyzing the clinical data available online. Interestingly, results of the MTT cell viability assay revealed that ATN-224 exhibits the highest potency in MDA-MB-231 and MDA-MB-453 (triple-negative subtype) among the four examined breast cancer cell lines [i.e. MDA-MB-231,MDA-MB-453 MCF-7 (luminal A subtype), SK-BR-3 (HER2-enriched subtype)]. Surprisingly, despite ATN-224 inhibited the activity of SOD1 in both MDA-MB-231 and MCF-7 cells, it only increased the cellular ROS level in MDA-MB-231 cells. Transcriptomic analysis (mRNAseq) was carried out to investigate the molecular mechanism of action of ATN-224 in MDA-MB-231 cells. KEGG enrichment pathway and GO enrichment analysis on the identified differentially expressed genes (DEGs) and Western blot analysis revealed that ATN-224 activated the p38-p53-p21 signaling pathway and induces cellular senescence in MDA-MB-231 and MCF-7 cells. ATN-224 also downregulated the expression of survivin, which is a well-known anti-apoptotic molecule and a proto-oncogene, and induced apoptosis in breast cancer cells. Surprisingly, ATN-224 upregulated the expression level of phospho-HER2 in the estrogen receptor positive (ER+) MCF-7 cells but downregulated the expression of phospho-HER2 in the ER- MDA-MB-231 cells. Moreover, higher concentration of ATN-224 was required to inhibit the total cellular activity of SOD1 in MCF-7 cells, which is known to exhibit higher SOD1 activity as compared to MDA-MB-231 cells.
In conclusion, we demonstrated that ATN-224 exhibits differential potency and molecular mechanism of actions in different breast cancer cells. Findings of the current study suggest that ATN-224 may be more effective for use in treating triple-negative breast cancer. Understanding the differential molecular mechanism of action of ATN-224 in different breast cancer cells may provide important information for selecting the most suitable drug for breast cancer combinational therapy in the future.
Aghazadeh, S., & Yazdanparast, R. (2017). Activation of STAT3/HIF-1alpha/Hes-1 axis promotes trastuzumab resistance in HER2-overexpressing breast cancer cells via down-regulation of PTEN. Biochim Biophys Acta Gen Subj, 1861(8), 1970-1980.
Ahmad, G., Almasry, M., Dhillon, A. S., Abuayyash, M. M., Kothandaraman, N., & Cakar, Z. (2017). Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In Oxidative Stress in Human Reproduction (pp. 1-16): Springer.
Bae, Y.-H., Shin, J.-M., Park, H.-J., Jang, H.-O., Bae, M.-K., & Bae, S.-K. (2014). Gain-of-function mutant p53-R280K mediates survival of breast cancer cells. Genes & genomics, 36(2), 171-178.
Ben-Porath, I., & Weinberg, R. A. (2005). The signals and pathways activating cellular senescence. The international journal of biochemistry & cell biology, 37(5), 961-976.
Benhar, M., Engelberg, D., & Levitzki, A. (2002). ROS, stress‐activated kinases and stress signaling in cancer. EMBO reports, 3(5), 420-425.
Berno, V., Amazit, L., Hinojos, C., Zhong, J., Mancini, M. G., Sharp, Z. D., & Mancini, M. A. (2008). Activation of estrogen receptor-α by E2 or EGF induces temporally distinct patterns of large-scale chromatin modification and mRNA transcription. PLoS One, 3(5), e2286.
Blandino, G., Levine, A. J., & Oren, M. (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 18(2), 477-485.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394-424.
Brewer, G. J., Dick, R. D., Grover, D. K., LeClaire, V., Tseng, M., Wicha, M., Sondak, V. K. (2000). Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clinical Cancer Research, 6(1), 1-10.
Brewer, T. F., Garcia, F. J., Onak, C. S., Carroll, K. S., & Chang, C. J. (2015). Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annual review of biochemistry, 84, 765-790.
Campisi, J., & Di Fagagna, F. D. A. (2007). Cellular senescence: when bad things happen to good cells. Nature reviews Molecular cell biology, 8(9), 729-740.
Chen, Q. M., Tu, V. C., Catania, J., Burton, M., Toussaint, O., & Dilley, T. (2000). Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. Journal of cell science, 113(22), 4087-4097.
Chen, Z., Trotman, L. C., Shaffer, D., Lin, H.-K., Dotan, Z. A., Niki, M.,Gerald, W. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436(7051), 725-730.
Chumsri, S., Howes, T., Bao, T., Sabnis, G., & Brodie, A. (2011). Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol, 125(1-2), 13-22.
Collado, M., Blasco, M. A., & Serrano, M. (2007). Cellular senescence in cancer and aging. Cell, 130(2), 223-233.
Coppé, J.-P., Desprez, P.-Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99-118.
DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., Siegel, R. L. (2019). Breast cancer statistics, 2019. CA Cancer J Clin, 69(6), 438-451.
Dirac, A. M., & Bernards, R. (2003). Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. Journal of Biological Chemistry, 278(14), 11731-11734.
Donate, F., Juarez, J., Burnett, M., Manuia, M., Guan, X., Shaw, D.,Batuman, O. (2008). Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224). British journal of cancer, 98(4), 776-783.
Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological reviews, 82(1), 47-95.
Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Clish, C. B. (2011). SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer cell, 19(3), 416-428.
Freund, A., Orjalo, A. V., Desprez, P.-Y., & Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends in molecular medicine, 16(5), 238-246.
Ghoncheh, M., Mahdavifar, N., Darvishi, E., & Salehiniya, H. (2016). Epidemiology, Incidence and Mortality of Breast Cancer in Asia. Asian Pacific Journal of Cancer Prevention, 17(sup3), 47-52.
Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P., & Chandel, N. S. (2014). Targeting SOD1 reduces experimental non–small-cell lung cancer. The Journal of clinical investigation, 124(1), 117-128.
Glotzer, M. (2005). The molecular requirements for cytokinesis. Science, 307 5716, 1735-1739.
Gomes, A. S., Trovão, F., Andrade Pinheiro, B., Freire, F., Gomes, S., Oliveira, C., Carvalho, A. L. (2018). The crystal structure of the R280K mutant of human p53 explains the loss of DNA binding. International journal of molecular sciences, 19(4), 1184.
Gomez, M. L., Shah, N., Kenny, T. C., Jenkins, E. C., Jr., & Germain, D. (2019). SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene, 38(29), 5751-5765.
Goncalves, R. L., Quinlan, C. L., Perevoshchikova, I. V., Hey-Mogensen, M., & Brand, M. D. (2015). Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. Journal of Biological Chemistry, 290(1), 209-227.
Han, D., Antunes, F., Canali, R., Rettori, D., & Cadenas, E. (2003). Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. Journal of Biological Chemistry, 278(8), 5557-5563.
Harvey, M., Sands, A., Weiss, R., Hegi, M., Wiseman, R., Pantazis, P., Donehower, L. (1993). In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene, 8(9), 2457-2467.
Hassan, H. M., Dougherty, H., & Fridovich, I. (1980). Inhibitors of superoxide dismutases: a cautionary tale. Archives of biochemistry and biophysics, 199(2), 349-354.
Higgins, G. C., Devenish, R. J., Beart, P. M., & Nagley, P. (2012). Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radical Biology and Medicine, 53(10), 1960-1967.
Hileman, E. A., Achanta, G., & Huang, P. (2001). Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opinion on Therapeutic Targets, 5(6), 697-710.
Hu, W., & Kavanagh, J. J. (2003). Anticancer therapy targeting the apoptotic pathway. The lancet oncology, 4(12), 721-729.
Huang, P., Feng, L., Oldham, E. A., Keating, M. J., & Plunkett, W. (2000). Superoxide dismutase as a target for the selective killing of cancer cells. Nature, 407(6802), 390-395.
Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., & Foster, D. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 25(55), 7305-7310.
Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N. A., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166(15), 1587-1597.
Jordan, V. C. (2003). Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov, 2(3), 205-213.
Juarez, J. C., Betancourt, O., Pirie-Shepherd, S. R., Guan, X., Price, M. L., Shaw, D. E., Doñate, F. (2006). Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clinical Cancer Research, 12(16), 4974-4982.
Juarez, J. C., Manuia, M., Burnett, M. E., Betancourt, O., Boivin, B., Shaw, D. E., Doñate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proceedings of the National Academy of Sciences, 105(20), 7147-7152.
Junk, D. J., Vrba, L., Watts, G. S., Oshiro, M. M., Martinez, J. D., & Futscher, B. W. (2008). Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia, 10(5), 450-461.
Kim, Y. H., Choi, Y. W., Lee, J., Soh, E. Y., Kim, J.-H., & Park, T. J. (2017). Senescent tumor cells lead the collective invasion in thyroid cancer. Nature communications, 8(1), 1-14.
Kumari, S., Badana, A. K., & Malla, R. (2018). Reactive oxygen species: a key constituent in cancer survival. Biomarker insights, 13, 1177271918755391.
Lee, M., & Lee, J.-S. (2014). Exploiting tumor cell senescence in anticancer therapy. BMB reports, 47(2), 51.
León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., & Orihuela, P. A. (2017). FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Applied Sciences, 7(1), 49.
Li, X., & Nicklas, R. B. (1995). Mitotic forces control a cell-cycle checkpoint. Nature, 373(6515), 630-632.
Loreto, C., La Rocca, G., Anzalone, R., Caltabiano, R., Vespasiani, G., Castorina, S., Giunta, S. (2014). The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. BioMed research international, 2014.
Lowndes, S., & Harris, A. (2004). Copper chelation as an antiangiogenic therapy. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 14(11-12), 529-540.
Maximiano, S., Magalhaes, P., Guerreiro, M. P., & Morgado, M. (2016). Trastuzumab in the Treatment of Breast Cancer. BioDrugs, 30(2), 75-86.
Medici, V., & Sturniolo, G. C. (2008). Tetrathiomolybdate, a copper chelator for the treatment of Wilson disease, pulmonary fibrosis and other indications. IDrugs: the investigational drugs journal, 11(8), 592-606.
Modi, S., DiGiovanna, M. P., Lu, Z., Moskowitz, C., Panageas, K. S., Van Poznak, C., Stern, D. F. (2005). Phosphorylated/activated HER2 as a marker of clinical resistance to single agent taxane chemotherapy for metastatic breast cancer. Cancer investigation, 23(6), 483-487.
Mookerjee, A., Basu, J. M., Majumder, S., Chatterjee, S., Panda, G. S., Dutta, P., Roy, S. (2006). A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo. BMC cancer, 6(1), 267.
Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical journal, 417(1), 1-13.
Nayar, U., Cohen, O., Kapstad, C., Cuoco, M. S., Waks, A. G., Wander, S. A., Marini, L. (2019). Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor–directed therapies. Nature genetics, 51(2), 207-216.
Norbury, C. J., & Hickson, I. D. (2001). Cellular responses to DNA damage. Annual review of pharmacology and toxicology, 41(1), 367-401.
Novak, B., Csikasz-Nagy, A., Gyorffy, B., Chen, K., & Tyson, J. J. (1998). Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophysical chemistry, 72(1-2), 185-200.
O'Halloran, T. V., & Culotta, V. C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. Journal of Biological Chemistry, 275(33), 25057-25060.
Obexer, P., & Ausserlechner, M. J. (2014). X-linked inhibitor of apoptosis protein–a critical death resistance regulator and therapeutic target for personalized cancer therapy. Frontiers in oncology, 4, 197.
Omar, R. A., Chyan, Y.-J., Andorn, A. C., Poeggeler, B., Robakis, N. K., & Pappolla, M. A. (1999). Increased expression but reduced activity of antioxidant enzymes in Alzheimer's disease. Journal of Alzheimer's Disease, 1(3), 139-145.
Ostrakhovitch, E., Song, Y., & Cherian, M. (2016). Basal and copper-induced expression of metallothionein isoform 1, 2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53. Journal of Trace Elements in Medicine and Biology, 35, 18-29.
Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancers, 3(1), 994-1013.
Papa, L., Hahn, M., Marsh, E. L., Evans, B. S., & Germain, D. (2014). SOD2 to SOD1 switch in breast cancer. Journal of Biological Chemistry, 289(9), 5412-5416.
Papa, L., Manfredi, G., & Germain, D. (2014). SOD1, an unexpected novel target for cancer therapy. Genes & cancer, 5(1-2), 15.
Papanikolaou, V., Iliopoulos, D., Dimou, I., Dubos, S., Tsougos, I., Theodorou, K., Tsezou, A. (2009). The involvement of HER2 and p53 status in the regulation of telomerase in irradiated breast cancer cells. International journal of oncology, 35(5), 1141-1149.
Parrales, A., & Iwakuma, T. (2015). Targeting oncogenic mutant p53 for cancer therapy. Frontiers in oncology, 5, 288.
Phatak, V. M., & Muller, P. A. (2015). Metal toxicity and the p53 protein: an intimate relationship. Toxicology Research, 4(3), 576-591.
Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer letters, 387, 95-105.
Rakhit, R., & Chakrabartty, A. (2006). Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1762(11-12), 1025-1037.
Rashmi, K., Raj, M. H., Paul, M., Girish, K. S., Salimath, B. P., & Aparna, H. (2019). A new pyrrole based small molecule from Tinospora cordifolia induces apoptosis in MDA-MB-231 breast cancer cells via ROS mediated mitochondrial damage and restoration of p53 activity. Chemico-biological interactions, 299, 120-130.
Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(12), 2977-2992.
Rigo, A., Viglino, P., & Rotilio, G. (1975). Kinetic study of O2− dismutation by bovine superoxide dismutase. Evidence for saturation of the catalytic sites by O2−. Biochemical and biophysical research communications, 63(4), 1013-1018.
Ring, A., & Dowsett, M. (2004). Mechanisms of tamoxifen resistance. Endocr Relat Cancer, 11(4), 643-658.
Sajesh, B. V., & McManus, K. J. (2015). Targeting SOD1 induces synthetic lethal killing in BLM-and CHEK2-deficient colorectal cancer cells. Oncotarget, 6(29), 27907.
Salvesen, G. S. (2002). Caspases and apoptosis. Essays in biochemistry, 38, 9-19.
Sauer, F. C. (1935). Mitosis in the neural tube. Journal of Comparative Neurology, 62(2), 377-405.
Schafer, K. (1998). The cell cycle: a review. Veterinary pathology, 35(6), 461-478.
Shiozaki, E. N., & Shi, Y. (2004). Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends in biochemical sciences, 29(9), 486-494.
Skandalis, S. S., Afratis, N., Smirlaki, G., Nikitovic, D., Theocharis, A. D., Tzanakakis, G. N., & Karamanos, N. K. (2014). Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biology, 35, 182-193.
Skrzydlewska, E., Stankiewicz, A., Sulkowska, M., Sulkowski, S., & Kasacka, I. (2001). Antioxidant status and lipid peroxidation in colorectal cancer. Journal of toxicology and environmental health Part A, 64(3), 213-222.
Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Futcher, B. (1998). Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell, 9(12), 3273-3297.
Subik, K., Lee, J.-F., Baxter, L., Strzepek, T., Costello, D., Crowley, P., Hicks, D. G. (2010). The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast cancer: basic and clinical research, 4, 117822341000400004.
Takahashi, R., Deveraux, Q., Tamm, I., Welsh, K., Assa-Munt, N., Salvesen, G. S., & Reed, J. C. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. Journal of Biological Chemistry, 273(14), 7787-7790.
Tchkonia, T., Zhu, Y., Van Deursen, J., Campisi, J., & Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of clinical investigation, 123(3), 966-972.
Tong, C. W. S., Wu, M., Cho, W. C. S., & To, K. K. W. (2018). Recent Advances in the Treatment of Breast Cancer. Front Oncol, 8, 227.
Trapp, V., Lee, K., Donate, F., Mazar, A. P., & Fruehauf, J. P. (2009). Redox-related antimelanoma activity of ATN-224. Melanoma research, 19(6), 350-360.
Untch, M., Konecny, G. E., Paepke, S., & von Minckwitz, G. (2014). Current and future role of neoadjuvant therapy for breast cancer. Breast, 23(5), 526-537.
Wahl, G. M., & Carr, A. M. (2001). The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature cell biology, 3(12), E277-E286.
Wang, J., & Yi, J. (2008). Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer biology & therapy, 7(12), 1875-1884.
Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217(6), 1915-1928.
Wang, Z.-Q., Stingl, L., Morrison, C., Jantsch, M., Los, M., Schulze-Osthoff, K., & Wagner, E. F. (1997). PARP is important for genomic stability but dispensable in apoptosis. Genes & development, 11(18), 2347-2358.
Wu, J.-R., Liou, S.-F., Lin, S.-W., Chai, C.-Y., Dai, Z.-K., Liang, J.-C., Yeh, J.-L. (2009). Lercanidipine inhibits vascular smooth muscle cell proliferation and neointimal formation via reducing intracellular reactive oxygen species and inactivating Ras-ERK1/2 signaling. Pharmacological research, 59(1), 48-56.
Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33(3), 337-349.
Zhang, J. H., & Ming, X. (2000). DNA fragmentation in apoptosis. Cell research, 10(3), 205-211.
Zhao, C. Y., Grinkevich, V., Nikulenkov, F., Bao, W., & Selivanova, G. (2010). Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell cycle, 9(9), 1847-1855.