簡易檢索 / 詳目顯示

研究生: 劉邦偉
Liu, Pang-Wei
論文名稱: 通過計算流體力學與基於物理資訊的深度學習評估內漏流場
Fluid Dynamic Assessment of Endoleaks Using Physics-Based Deep Learning and Computational Fluid Dynamics
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 內漏腹主動脈瘤支架血液動力學CFD深度學習
外文關鍵詞: Endoleaks, abdominal aortic aneurysm, stent-graft, hemodynamics, CFD, deep learning
相關次數: 點閱:145下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內漏是指腹主動脈瘤囊內與支架之間發生血液滲漏的情況。這種情況可能會導致動脈瘤的破裂,增加致命風險並引發其他併發症。為了評估病患的內漏風險,基於血液動力學的方法成為一種有前途的心血管疾病臨床評估技術。計算流體動力學是被廣泛應用於內漏評估的模擬方法。CFD利用數值解析的方式,對血液在支架和動脈瘤囊內的流動進行建模與模擬,從而預測內漏的影響與可能性。
    物理資訊神經網絡則被認為是具有潛力超越 CFD的方法。 相比之下,PINNs 是基於深度學習的方法,通過將物理定律和數據驅動的學習相結合,來模擬血液動力學行為。PINNs 模型具有較強的學習能力和快速的計算速度。本研究通過比較 CFD 方法和 PINNs 方法在血液動力學的模擬結果,以深入研究支架在腹主動脈瘤中的影響。
    結果顯示,兩種方法在支架內的流體域壓力、流場分布和壁面剪應力的預測上呈現出一致性和可靠性。具體而言,兩種模型在支架內的壓力分佈趨勢和流場特徵上相似,能夠捕捉到主要的流動行為。然而,在支架末端和特定區域,CFD 和 PINNs 之間存在一些差異,可能是由於模型的物理特性建模和幾何形狀對流場的影響不同所致。總體而言,PINNs 展現了良好的準確性和可靠性,對於血液動力學分析提供了有用的訊息。這些模擬方法可以提供對流場的詳細分析,幫助醫生了解內漏的潛在風險因素,並制定更有效的治療策略。

    Intraluminal endoleaks refers to the blood seepage between the endovascular stent-graft and the aneurysm sac. This condition can lead to aneurysm rupture, increasing the risk of fatality and triggering other complications. To assess the risk of intraluminal leakage in patients, hemodynamics-based methods have emerged as promising clinical evaluation techniques for cardiovascular diseases. Computational Fluid Dynamics (CFD) is widely employed as a simulation method for hemodynamic assessment. It models and simulates the blood flow within the stent-graft and aneurysm sac using numerical analysis to predict the impact and likelihood of endoleaks.
    On the other hand, Physics-Informed Neural Networks (PINNs) are considered a potential alternative to CFD. In contrast, PINNs are based on deep learning and combine the learning of physical laws with data-driven approaches to simulate hemodynamic behavior. PINNs models exhibit strong learning capabilities and fast computational speed. In this study, a comparison between CFD and PINNs methods was conducted to investigate the influence of the stent in abdominal aortic aneurysms through the simulation of hemodynamics.
    The results showed consistent and reliable predictions of fluid pressure, flow distribution, and wall shear stress between the CFD and PINNs methods. Both models exhibited similar trends in pressure distribution and flow characteristics within the stent, capturing the primary flow behavior. However, some differences were observed, particularly at the stent's end and specific regions, which could be attributed to variations in modeling the physical characteristics and geometric effects on the flow field. Overall, PINNs demonstrated accurate and reliable performance, providing valuable insights for hemodynamic analysis.

    摘要 I 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.2.1 腹主動脈瘤之成因與發展 4 1.2.2 血管內動脈瘤修復 8 1.2.3 內漏 (Endoleaks) 的種類 9 1.2.4 腹主動脈瘤與內漏之數值分析 12 1.2.5 機器學習與深度學習的發展 13 1.3 研究目的 15 第2章 研究方法 16 2.1 病人特徵之模型建立 16 2.2 數值模擬方法 19 2.2.1 統御方程式 20 2.2.2 流體性質 21 2.2.3 材料設定 22 2.2.4 初始與邊界條件設定 23 2.2.5 網格獨立分析 25 2.3 深度學習 27 2.3.1 深度學習模型 27 2.3.2 物理資訊神經網路 27 2.3.2.1 模型架構 28 2.3.2.2 類神經網路 30 2.3.2.3 激勵函數 34 2.3.2.4 優化器 40 2.4 血液動力學參數分析 43 2.4.1 有效應力 43 2.4.2 壁面剪應力 45 第3章 結果與討論 47 3.1 血液動力學分析 47 3.1.1 流體域之壓力分析 48 3.1.2 流場分布分析 51 3.1.3 壁面剪應力分析 54 3.2 差異性量化統計分析 58 3.3 血液動力學參數的驗證 61 第4章 結論與未來展望 64 4.1 結論 64 4.2 未來展望 66 Reference 67 附錄 74 附錄 A: 有效應力推導 74

    [1] J. Stewart, G. Manmathan, and P. Wilkinson, "Primary prevention of cardiovascular disease: A review of contemporary guidance and literature," JRSM cardiovascular disease, vol. 6, p. 2048004016687211, 2017.
    [2] S. Mendis, P. Puska, B. e. Norrving, and W. H. Organization, "Global atlas on cardiovascular disease prevention and control," pp. 8-13, 2011.
    [3] M. Gameraddin, "Normal abdominal aorta diameter on abdominal sonography in healthy asymptomatic adults: impact of age and gender," Journal of Radiation Research and Applied Sciences, vol. 12, pp. 186-191, 2019.
    [4] I. M. Nordon, R. J. Hinchliffe, I. M. Loftus, and M. M. Thompson, "Pathophysiology and epidemiology of abdominal aortic aneurysms," Nature reviews cardiology, vol. 8, pp. 92-102, 2011.
    [5] A. M. Miniño, M. P. Heron, S. L. Murphy, and K. D. Kochanek, "Deaths: final data for 2004," National vital statistics reports, vol. 55, p. 1, 2007.
    [6] L. Biasi, T. Ali, R. Hinchliffe, R. Morgan, I. Loftus, and M. Thompson, "Intraoperative DynaCT detection and immediate correction of a type 1a endoleak following endovascular repair of abdominal aortic aneurysm," Cardiovascular and interventional radiology, vol. 32, pp. 535-538, 2009.
    [7] F. J. Veith, R. A. Baum, T. Ohki, M. Amor, M. Adiseshiah, J. D. Blankensteijn, J. Buth, T. A. Chuter, R. M. Fairman, and G. Gilling-Smith, "Nature and significance of endoleaks and endotension: summary of opinions expressed at an international conference," Journal of vascular surgery, vol. 35, pp. 1029-1035, 2002.
    [8] P. L. Faries, H. Cadot, G. Agarwal, K. C. Kent, L. H. Hollier, and M. L. Marin, "Management of endoleak after endovascular aneurysm repair: cuffs, coils, and conversion," Journal of vascular surgery, vol. 37, pp. 1155-1161, 2003.
    [9] K. Karaman, A. M. Dokdok, and O. Karadeniz, "CT-and Fluoroscopy-guided percutaneous transabdominal embolization of Type II endoleak," The Eurasian Journal of Medicine, vol. 45, p. 132, 2013.
    [10] K. E. Brown, K. S. Heyer, J. S. Matsumura, and M. K. Eskandari, "Late type III endoleak and graft failure of an Ancure stent-graft," Journal of Vascular and Interventional Radiology, vol. 19, pp. 1506-1508, 2008.
    [11] G. Maleux, L. Poorteman, A. Laenen, B. Saint-Lèbes, S. Houthoofd, I. Fourneau, and H. Rousseau, "Incidence, etiology, and management of type III endoleak after endovascular aortic repair," Journal of vascular surgery, vol. 66, pp. 1056-1064, 2017.
    [12] G. Espinosa, M. R. Alves, M. F. Caramalho, L. Dzieciuchowicz, and S. R. Santos, "A 10-year single-center prospective study of endovascular abdominal aortic aneurysm repair with the talent stent-graft," Journal of Endovascular Therapy, vol. 16, pp. 125-135, 2009.
    [13] G. H. White, J. May, R. C. Waugh, X. Chaufour, and W. Yu, "Type III and type IV endoleak: toward a complete definition of blood flow in the sac after endoluminal AAA repair," Journal of Endovascular Therapy, vol. 5, pp. 305-309, 1998.
    [14] S. Ameli-Renani, V. Pavlidis, and R. A. Morgan, "Secondary endoleak management following TEVAR and EVAR," CardioVascular and Interventional Radiology, vol. 43, pp. 1839-1854, 2020.
    [15] Y.-H. Lu, K. Mani, B. Panigrahi, W.-T. Hsu, and C.-Y. Chen, "Endoleak assessment using computational fluid dynamics and image processing methods in stented abdominal aortic aneurysm models," Computational and mathematical methods in medicine, vol. 2016, p. 9567294, 2016.
    [16] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the national academy of sciences, vol. 79, pp. 2554-2558, 1982.
    [17] A. Arzani, J.-X. Wang, and R. M. D'Souza, "Uncovering near-wall blood flow from sparse data with physics-informed neural networks," Physics of Fluids, vol. 33, p. 071905, 2021.
    [18] J. Buth, P. L. Harris, C. van Marrewijk, and G. Fransen, "The significance and management of different types of endoleaks," Seminars in Vascular Surgery, vol. 16, pp. 95-102, 2003.
    [19] N. Sakalihasan, R. Limet, and O. D. Defawe, "Abdominal aortic aneurysm," The Lancet, vol. 365, pp. 1577-1589, 2005.
    [20] E. Bossone and K. A. Eagle, "Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes," Nature Reviews Cardiology, vol. 18, pp. 331-348, 2021.
    [21] G. Ailawadi, J. L. Eliason, and G. R. Upchurch, "Current concepts in the pathogenesis of abdominal aortic aneurysm," Journal of Vascular Surgery, vol. 38, pp. 584-588, 2003.
    [22] J. Moore Jr, D. Ku, C. Zarins, and S. Glagov, "Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis," vol. 114, pp. 391-397, 1992.
    [23] T. K. Hsiai, "Mechanosignal transduction coupling between endothelial and smooth muscle cells: role of hemodynamic forces," American Journal of Physiology-Cell Physiology, vol. 294, pp. C659-C661, 2008.
    [24] P. F. Davies, C. F. Dewey, S. R. Bussolari, E. J. Gordon, and M. Gimbrone, "Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells," The Journal of clinical investigation, vol. 73, pp. 1121-1129, 1984.
    [25] Y. Fung and S. Liu, "Elementary mechanics of the endothelium of blood vessels," J. Biomech Eng., vol. 115, pp. 1-12, 1993.
    [26] E. Expert Panel on Detection, "Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on Detection, Evaluation, and Treatment of high blood cholesterol in adults (Adult Treatment Panel III)," JAMA: the journal of the American Medical Association, vol. 285, p. 2486, 2001.
    [27] F. Grégory, "Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion," Atherosclerosis, vol. 318, pp. 60-69, 2021.
    [28] Z. Ye, K. R. Bailey, E. Austin, and I. J. Kullo, "Family history of atherosclerotic vascular disease is associated with the presence of abdominal aortic aneurysm," Vascular medicine (London, England), vol. 21, pp. 41-6, 2016.
    [29] H. Ashton, M. Buxton, N. Day, L. Kim, T. Marteau, R. Scott, S. Thompson, and N. Walker, "Multicentre Aneurysm Screening Study Group. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial," Lancet, vol. 360, pp. 1531-1539, 2002.
    [30] A. England and R. Mc Williams, "Endovascular aortic aneurysm repair (EVAR)," The Ulster medical journal, vol. 82, p. 3, 2013.
    [31] M. Armon, S. Yusuf, S. Whitaker, R. Gregson, P. Wenham, and B. Hopkinson, "Thrombus distribution and changes in aneurysm size following endovascular aortic aneurysm repair," European journal of vascular and endovascular surgery, vol. 16, pp. 472-476, 1998.
    [32] G. H. White, W. Yu, J. May, X. Chaufour, and M. S. Stephen, "Endoleak as a complication of endoluminal grafting of abdominal aortic aneurysms: classification, incidence, diagnosis, and management," Journal of Endovascular Therapy, vol. 4, pp. 152-168, 1997.
    [33] T. W. Kassem, "Follow up CT angiography post EVAR: Endoleaks detection, classification and management planning," The Egyptian Journal of Radiology and Nuclear Medicine, vol. 48, pp. 621-626, 2017.
    [34] K. Spanos, F. Rohlffs, G. Panuccio, A. Eleshra, N. Tsilimparis, and T. Koelbel, "Outcomes of endovascular treatment of endoleak type Ia after EVAR: a systematic review of the literature," The Journal of Cardiovascular Surgery, vol. 60, pp. 175-185, 2019.
    [35] K. P. Donas, D. Telve, G. Torsello, G. Pitoulias, A. Schwindt, and M. Austermann, "Use of parallel grafts to save failed prior endovascular aortic aneurysm repair and type Ia endoleaks," Journal of Vascular Surgery, vol. 62, pp. 578-584, 2015.
    [36] S. El Batti, F. Cochennec, F. Roudot-Thoraval, and J.-P. Becquemin, "Type II endoleaks after endovascular repair of abdominal aortic aneurysm are not always a benign condition," Journal of vascular surgery, vol. 57, pp. 1291-1297, 2013.
    [37] D. Sidloff, V. Gokani, P. Stather, E. Choke, M. Bown, and R. Sayers, "Editor's choice–type II endoleak: conservative management is a safe strategy," European Journal of Vascular and Endovascular Surgery, vol. 48, pp. 391-399, 2014.
    [38] A. Karthikesalingam, S. G. Thrumurthy, D. Jackson, E. Choke, R. D. Sayers, I. M. Loftus, M. M. Thompson, and P. J. Holt, "Current evidence is insufficient to define an optimal threshold for intervention in isolated type II endoleak after endovascular aneurysm repair," Journal of Endovascular Therapy, vol. 19, pp. 200-208, 2012.
    [39] N. Green, D. Sidloff, P. Stather, M. Bown, R. Sayers, and E. Choke, "Endoleak after endovascular aneurysm repair: current status," Reviews in Vascular Medicine, vol. 2, pp. 43-47, 2014.
    [40] D. Martin, A. Zaman, J. Hacker, D. Mendelow, and D. Birchall, "Analysis of haemodynamic factors involved in carotid atherosclerosis using computational fluid dynamics," The British Journal of Radiology, vol. 82, pp. S33-S38, 2009.
    [41] N. Filipovic, M. Ivanovic, D. Krstajic, and M. Kojic, "Hemodynamic Flow Modeling Through an Abdominal Aorta Aneurysm Using Data Mining Tools," IEEE Transactions on Information Technology in Biomedicine, vol. 15, pp. 189-194, 2011.
    [42] J. Bisbal, G. Engelbrecht, M.-C. Villa-Uriol, and A. F. Frangi, "Prediction of Cerebral Aneurysm Rupture Using Hemodynamic, Morphologic and Clinical Features: A Data Mining Approach," Database and Expert Systems Applications, pp. 59-73, 2011.
    [43] T. Canchi, S. D. Kumar, E. Y. Ng, and S. Narayanan, "A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms," BioMed research international, vol. 2015, p. 861627, 2015.
    [44] E. S. Di Martino, G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli, and A. Redaelli, "Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm," Med Eng Phys, vol. 23, pp. 647-55, 2001.
    [45] Z. Li and C. Kleinstreuer, "Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model," J Biomech, vol. 39, pp. 2264-2273, 2006.
    [46] A. Polanczyk, M. Podyma, L. Trebinski, J. Chrzastek, I. Zbicinski, and L. Stefanczyk, "A novel attempt to standardize results of CFD simulations basing on spatial configuration of aortic stent-grafts," PloS one, vol. 11, p. e0153332, 2016.
    [47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Communications of the ACM, vol. 60, pp. 84-90, 2017.
    [48] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning," Nature biotechnology, vol. 33, pp. 831-838, 2015.
    [49] S. Hahn, M. Perry, C. S. Morris, S. Wshah, and D. J. Bertges, "Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair," JVS-Vascular Science, vol. 1, pp. 5-12, 2020.
    [50] L. Liang, M. Liu, C. Martin, J. A. Elefteriades, and W. Sun, "A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm," Biomechanics and Modeling in Mechanobiology, vol. 16, pp. 1519-1533, 2017.
    [51] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural networks, vol. 2, pp. 359-366, 1989.
    [52] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, "Physics-informed neural networks (PINNs) for fluid mechanics: A review," Acta Mechanica Sinica, vol. 37, pp. 1727-1738, 2021.
    [53] M. Sarabian, H. Babaee, and K. Laksari, "Physics-informed neural networks for brain hemodynamic predictions using medical imaging," IEEE transactions on medical imaging, vol. 41, pp. 2285-2303, 2022.
    [54] M. F. Fathi, I. Perez-Raya, A. Baghaie, P. Berg, G. Janiga, A. Arzani, and R. M. D’Souza, "Super-resolution and denoising of 4D-flow MRI using physics-informed deep neural nets," Computer Methods and Programs in Biomedicine, vol. 197, p. 105729, 2020.
    [55] Y. Papaharilaou, J. A. Ekaterinaris, E. Manousaki, and A. N. Katsamouris, "A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms," Journal of Biomechanics, vol. 40, pp. 367-377, 2007.
    [56] J. H. Leung, A. R. Wright, N. Cheshire, J. Crane, S. A. Thom, A. D. Hughes, and Y. Xu, "Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models," Biomedical engineering online, vol. 5, p. 33, 2006.
    [57] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen, "Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions," Annals of biomedical engineering, vol. 28, pp. 1281-1299, 2000.
    [58] Z. Li and C. Kleinstreuer, "Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model," Journal of biomechanics, vol. 39, pp. 2264-2273, 2006.
    [59] K.-J. Bathe and J. Dong, "Solution of incompressible viscous fluid flow with heat transfer using ADINA-F," Computers & Structures, vol. 26, pp. 17-31, 1987.
    [60] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer, "Machine learning–accelerated computational fluid dynamics," Proceedings of the National Academy of Sciences, vol. 118, p. e2101784118, 2021.
    [61] K. M. Tse, P. Chiu, H. P. Lee, and P. Ho, "Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations," Journal of biomechanics, vol. 44, pp. 827-836, 2011.
    [62] C.-Y. Chen, R. Antón, M.-y. Hung, P. Menon, E. A. Finol, and K. Pekkan, "Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling," Journal of Biomechanical Engineering, vol. 136, pp. 031001-031001, 2014.
    [63] A. Valencia, D. Ledermann, R. Rivera, E. Bravo, and M. Galvez, "Blood flow dynamics and fluid–structure interaction in patient‐specific bifurcating cerebral aneurysms," International Journal for Numerical Methods in Fluids, vol. 58, pp. 1081-1100, 2008.
    [64] B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, "Non-Newtonian blood flow in human right coronary arteries: steady state simulations," Journal of biomechanics, vol. 37, pp. 709-720, 2004.
    [65] M. Raghavan and D. A. Vorp, "Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability," Journal of biomechanics, vol. 33, pp. 475-482, 2000.
    [66] J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa, "Energy-efficient neuron, synapse and STDP integrated circuits," IEEE transactions on biomedical circuits and systems, vol. 6, pp. 246-256, 2012.
    [67] I. Kandel and M. Castelli, "Transfer learning with convolutional neural networks for diabetic retinopathy image classification. A review," Applied Sciences, vol. 10, p. 2021, 2020.
    [68] P. Ramachandran, B. Zoph, and Q. V. Le, "Searching for activation functions," arXiv preprint vol. 1710, p. 05941, 2017.
    [69] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint vol. 1412, p. 6980, 2014.
    [70] C. Jong and W. Springer, "Teaching von mises stress: from principal axes to nonprincipal axes," 2009 Annual Conference & Exposition, pp. 14.1159. 1-14.1159. 9, 2009.
    [71] K. Volokh, "Comparison of biomechanical failure criteria for abdominal aortic aneurysm," Journal of biomechanics, vol. 43, pp. 2032-2034, 2010.
    [72] N.-H. Kim, B. V. Sankar, and A. V. Kumar, "Introduction to finite element analysis and design," pp. 377-423, 2018.
    [73] A. Niesłony, "Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method," Journal of Theoretical and Applied Mechanics, vol. 48, pp. 233-254, 2010.
    [74] M.-Y. Liu, Y. Jiao, J. Liu, S. Zhang, and W. Li, "Hemodynamic parameters predict in-stent thrombosis after multibranched endovascular repair of complex abdominal aortic aneurysms: a retrospective study of branched stent-graft thrombosis," Frontiers in cardiovascular medicine, vol. 8, p. 654412, 2021.
    [75] L. Fazzini, "Endovascular repair of the aneurysm of the abdominal aorta by Chimney technique: a focus on the hemodynamics," Politecnico di Torino, pp. 11-15, 2020.
    [76] A. Polanczyk, A. Piechota-Polanczyk, I. Huk, C. Neumayer, and M. Strzelecki, "Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Endovascular prosthesis endoleaks," Ieee Access, vol. 10, pp. 18873-18885, 2022.
    [77] T. Frauenfelder, M. Lotfey, T. Boehm, and S. Wildermuth, "Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation," Cardiovasc Intervent Radiol, vol. 29, pp. 613-23, 2006.
    [78] A. Polańczyk, M. Podyma, L. Stefańczyk, and I. Zbiciński, "Effects of stent-graft geometry and blood hematocrit on hemodynamic in Abdominal Aortic Aneurysm," Chemical and Process Engineering, vol. 33, pp. 53-61, 2012.
    [79] J. Rychlewski, "On Hooke's law," Journal of Applied Mathematics and Mechanics, vol. 48, pp. 303-314, 1984.
    [80] I. Jong and W. Springer, "Teaching Von Mises Stress: From Principal Axes To Nonprincipal Axes," pp. 14.1159.1-14.1159.9, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE