| 研究生: |
林宣均 Lin, Xuan-Jun |
|---|---|
| 論文名稱: |
硫氰酸亞銅薄膜應用於紫外光光檢測器之研究 A study of application of CuSCN thin film to ultraviolet photodetectors |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | CuSCN 、電化學沉積 、紫外線 、金半金光檢測器 |
| 外文關鍵詞: | CuSCN, UV, MSM, photodetector |
| 相關次數: | 點閱:58 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究無機材料硫氰酸亞銅(CuSCN)作為紫外線光檢測器之吸收層,探討其檢測特性。本研究利用恆電位電流儀以電化學沉積(電鍍)的方式將CuSCN薄膜沉積在ITO玻璃基板上,研究薄膜相關特性,然後利用微影定義指叉式電極圖形,並鋪上一層金屬銀作為蕭特基接觸之電極,形成金屬-半導體-金屬(金半金)結構之紫外線光檢測器。
研究不同濃度電鍍液沉積的薄膜之相關特性,藉由掃描式電子顯微鏡(SEM)、X光繞射分析儀(XRD)與紫外線/可見光光譜儀等,分別觀察CuSCN薄膜表面型態、分析其晶體結構與薄膜穿透吸收頻譜。最後以電鍍液濃度12 mM、24 mM與33 mM鍍製的CuSCN薄膜製作成金屬-半導體-金屬(金半金)結構之紫外線光檢測器,使用指叉狀電極間距為2 μm和5 μm之元件,給予-3 V到0 V的偏壓量測光響應,元件中,以電極間距為5 μm之元件在光檢測上最穩定。以紫外光照射及偏壓-3 V下,濃度相對應之元件其光暗電流比為1.11×102、2.88×103和2.11×102,紫外光/可見光之光響應比值為27.58、653.29和66.38。
最佳紫外光響應及紫外光/可見光光響應比值之元件都是以24 mM電鍍液濃度鍍CuSCN,這可能是:以此濃度電鍍之薄膜有著較平滑的表面、較大的晶粒以及晶粒堆積較密實的結果。總言之,CuSCN金半金結構紫外線光檢測器是個很優異的紫外光檢測元件。
This thesis investigates photo-detecting characteristics of a CuSCN film as an ultraviolet (UV) photodetectors (PD) absorber. The CuSCN films were deposited on an ITO glass substrate by electrodeposition technique. Film properties of the CuSCN films deposited with various electrolyte solution concentrations were analyzed using SEM, XRD and UV/visible transmission spectra. Solution concentration of 12 mM, 24 mM and 33 mM were chosen to fabricate the metal-semiconductor-metal (MSM) PDs with electrode’s finger spacing of 2 μm and 5 μm. Devices with finger spacing of 5 μm exhibit the most stable detecting characteristics. The photocurrent magnifications under UV illumination are 1.11×102, 2.88×103 and 2.11×102 at a bias voltage of -3 V, and their UV-visible response rejection ratio (RUV/R400 nm) are 27.58, 653.29 and 66.38, respectively. The concentration of 24 mM fabricated PDs exhibits the best UV photo response and the highest UV-visible rejection ratio. This might attribute to its relatively smoother film surface, larger grains and grain packing denser as compare to other concentration fabricated PDs. In all, the CuSCN MSM PD is a great candidate for UV detecting devices.
[1] M. Sasaki, S. Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa, T. Sakata. "Ground-Based Observation of Biologically Active Solar Ultraviolet-B Irradiance at 35°N Latitude in Japan" Journal of geomagnetism and geoelectricity, 45, 473-485, (1993).
[2] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, M. Razeghi, "AlxGa1-xN for solar-blind UV detectors" Journal of Crystal Growth, 231, 366-370, (2001).
[3] K. J. Chen, F. Y. Hung, S. J. Chang, S. J. Young, "Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin film" Journal of Alloys and Compounds, 479, 674-677, (2009).
[4] S. Hatch, J. Briscoe, S. Dunn, "A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response" Advanced Material, 25, 867-871, (2013).
[5] D. Y. Kim, J. Ryu, J. Manders, J. Lee, F. So, "Air-Stable, Solution-Processed Oxide p−n Heterojunction Ultraviolet Photodetector" ACS Applied Material and Interfaces, 6, 1370-1374, (2014).
[6] M. M. Lajvardi, F. Hossein-Babaei, F. A. Boroumand, "Silver-Rutile UV Sensor Fabricated on Thermally Oxidized Titanium Foil" Engineering Materials, 495, 18-22, (2012).
[7] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wua, Y Bando, D. Golberg, "ZnS nanostructures: From synthesis to applications" Progress in Materials Science, 56, 175–287, (2011).
[8] H. Chen, L. Hu, X. Fang, L. Wu, "General Fabrication of Monolayer SnO2 Nanonets for High-Performance Ultraviolet Photodetectors" Advanced Functional Material, 22, 1229–1235, (2012).
[9] X. Fang, L. Hu, K. Huo, B.Gao, L. Zhao, M. Liao, P. K. Chu, Y. Bando, D. Golberg, "New Ultraviolet Photodetector Based on Individual Nb2O5 Nanobelts" Advanced Functional Material, 21, 3907–3915, (2011).
[10] Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, "Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors" Applied Physics Letters, 90, 031912, (2007).
[11] S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, X. Wang, "High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates" Advanced Functional Material, 21, 4464-4469, (2011).
[12] L. Wanga, D. Zhao, Z. Su, F. Fang, B. Li, Z. Zhang, D. Shen, X. Wang, "High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods" Organic Electronics, 11, 1318-1322, (2010).
[13] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, "Electrodeposited Nanocomposite n±p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics" Advanced Material, 12, 1263-1267, (2000).
[14] S. Ito, K. Tsujimoto, D. C. Nguyen, K. Manabe, H. Nishino, "Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency" International Journal of Hydrogen Energy, 38, 16749-16754, (2012).
[15] P. Pattanasattayavong, N. Yaacobi-Gross, K. Zhao, G. O. N. Ndjawa, J. Li, F. Yan, B. C. O’Regan, A. Amassian, T. D. Anthopoulos, "Hole-Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper (I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature" Advanced Material, 25, 1504-1509, (2013).
[16] P. Pattanasattayavong, G. O. N. Ndjawa, K. Zhao, K. W. Chou, N. Yaacobi-Gross, B. C. O’Regan, A. Amassianb, T. D. Anthopoulos, "Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature" Chemical Communication, 49, 4154-4156, (2013).
[17] C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, "Insights into CuSCN nanowire electrodeposition on flexible substrates" Electrochimica Acta, 110, 375-381, (2013).
[18] X. Gan, K. Liu, X. Du, L. Guo, H. Liu, "Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition" Journal of Materials Science, 50, 7866–7874, (2015).
[19] K. J. Chen, A. D. Laurent, F. Boucher, F. Odobela, D. Jacquemin, "Determining the most promising anchors for CuSCN: ab initio insights towards p-type DSSCs" Journal of Materials Chemistry, 10, 2217-2227, (2016).
[20] C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, "Room temperature template-free electrodeposition of CuSCN nanowires" Electrochemistry Communications, 24, 1-4, (2012).
[21] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, M. Gra¨tzel1, "Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency" Nature Communication, 10, 3834-3840, (2014).
[22] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, "CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%" ACS Nano Letters, 15, 3723-3728, (2015).
[23] Y. Ni, Z. Jin, Y. Fu, "Electrodeposition of p-Type CuSCN Thin Films by a New Aqueous Electrolyte With Triethanolamine Chelation" Journal of the American Ceramic Society, 90, 2966-2973, (2007).
[24] W. Schottky, R. Stromer, F. Waible, Hochfrequenztechnik 37, 162-165, (1931).
[25] S. M. Sze, Physics of Semiconductor Devices, 2nd, 744, (1981).
[26] W. Schottky, R. Stromer, F. Waible, Hochfrequenztechnik 37, 162-165, (1931).
[27] Donald A. Neamen,楊賜麟翻譯, "半導體物理與元件" ,滄海書局 (2012).
[28] K. Lee, M. Shur, T. A. Fjeldly, T. Ytterdal, "Semiconductor Devics Modeling for VLSI" Prentice-Hall International Editions, (1993).
[29] M. Sze, D. J. Coleman, JR., A. Loya, Solid-State Electronics, 14, 1209, (1971).
[30] E. Budianu, M. Purica, F. Iacomi, C. Baban, P. prepelita, E. Manea, "Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes" Thin Solid Films, 516, 1629-1633, (2008).
[31] M. Sze, D. J. Coleman, JR., A. Loya, Solid-State Electronics, 14, 209, (1971).
[32] 石明昌,蘇炎坤,藍文厚,"硒化鋅系列金半金光檢測器之製作與研究",成功大學微電所碩士論文
[33] K. F. Brennan, J. Haralson II, J. W. Parks Jr, A. Salem, "Review of reliability issues of metal-semiconductor-metal and avalanche photodiode photonic detectors" Microelectronics Reliability, 39, 1873-1883, (1999).
[34] J. B. D. Soole, H. Schumacher, "Transit-Time Limited Frequency Response of InGaAs MSM Photodetectors" IEEE Transactions on Electron Devices, 37, 2285-2291, (1990).
[35] A. W. Sarto, B. J. V. Zeghbroeck, "Photocurrents in a Metal–Semiconductor–Metal Photodetector", IEEE Journal of Quantum Electronics, 33, 2188-2194, (1997).
[36] G. Wang, F. Xie, H. Lu, D. Chen, R. Zhang, Y. Zheng, L. Li, J. Zhou, "Performance comparison of front- and back-illuminated AlGaN-based metal–semiconductor–metal solar-blind ultraviolet photodetectors" Journal of Vacuum Science and Technology B, 31, 011202, (2013).
[37] S. F. Soares, "Photoconductive gain in a schottky barrier photodiode" Japanese Journal of Applied Physics, 31, 210, (1992).
[38] L. C. Chen, M. S. Fu, I. L. Huang, "Metal-semiconductor-metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition" Japanese Journal of Applied Physics, 43, 3353, (2004).
[39] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, Takashi Egawa, Takashi Jimbo, Masayoshi Umeno, "Back-illuminated GaN metal-semicaonductor-metal UV photodetector with high internal gain" Japanese Journal of Applied Physics, 40, L505, (2001).
[40] 尤光先,電鍍工程學,徐氏基金會出版,1976.
[41] 賴耿陽,實用電鍍技術全集,復漢出版社,1981.
[42] R. Friedfeld1, R.P. Raffaelle, J.G. Mantovani, "Electrodeposition of CuInxGa1-xSe2 thin films" Solar Energy Materials and Solar Cells, 58, 375-385, (1999).
[43] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版。
[44] M. Estela Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A. Gamboa, R. N. Noufi, "Cu(In,Ga)Se2-Based Photovoltaic Structure by Electrodeposition and Processing" Solar Energy Materials and Solar Cells, 55, 23-29, (1998).
[45] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料學會, 台灣, p. 169, 1996年
[46] J. F. Fang, D. C. Perng, J. W. Chen, "Mechanism of forming (220/204)-oriented CuInSe2 film on Al:ZnO substrate using a two-step selenization process" Journal of Crystal Growth, 321, 106-112, (2011).
[47] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, "High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm" Science, 325, 1665-1667, (2009).