簡易檢索 / 詳目顯示

研究生: 陳毓淳
Chen, Yu-Chun
論文名稱: 替代能源應用於船舶岸電系統之環境與健康效益分析-以台灣港口為例
The Environmental and Healthy Efficiency Analysis of Alternative Energies on Shore Power System -A Case Study in Taiwan’s Ports
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 岸電系統再生能源生命週期評估法(LCA)溫室氣體排放硫氧化物排放外部環境健康成本
外文關鍵詞: shore power system, renewable energy, life cycle assessment, GHG and SOX, environmental health costs
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣汙染問題為近期重要的議題,而海運部門作為汙染排放來源之一,特別是船舶在港區停泊階段,每年對於港區周遭產生極大的環境影響。有鑑於此,本研究以台灣地區國際港口靠泊之貨櫃輪為研究主體,利用生命週期法探討再生能源與非再生能源的生命週期排放,並以2030年與2050年為目標年分成兩階段,探討不同減排策略情境下,預期與評估溫室氣體(Greenhouse Gas, GHG)與硫氧化物(Sulfur Oxides, SOX)排放量是否可達到《國家自定預期貢獻,INDC》、《溫室氣體減量管理法,GGRMA》、國際海事組織(International Maritime Organization, IMO)之減排目標。另外,研究中亦分析降低硫氧化物排放,對外部環境健康成本之改善幅度。
    研究結果顯示,再生能源之碳排高低分別為太陽能發電、水力發電以及風力發電。非再生能源之碳排最高為煤火力發電、其次依序為含硫量0.1%、0.5%、1%的海運輕柴油,最低為天然氣發電。至於硫排放高低,再生能源依序為太陽能發電、風力發電、水力發電。非再生能源最高為含硫量1%的海運輕柴油,其次為煤火力發電、含硫量0.5%與0.1%的海運輕柴油,最低為天然氣發電。根據情境分析之結果顯示,2030年前之可行策略,以含硫量0.1%之低硫海運輕柴油,搭配岸電系統年成長率4%,溫室氣體相較2005年可降低20.1%,硫氧化物降低90.48%。2031年至2050年之可行策略,除了含硫量0.1%之輕柴油外,岸電年成長率則可從4%降低至1%,溫室氣體相較2005年與2008年可分別降低58.46%與56.12%,硫氧化物分別降低95.06%與94.78%。研究結果亦發現,實行上述策略後,硫氧化物外部健康成本於2030年與2050年,相對於當年度基礎情境,可改善81.85%與89.23%,顯示減排策略可顯著降低海運汙染對於民眾的健康負擔。綜合研究結果,岸電系統使用再生能源可有效改善溫室氣體與硫氧化物排放,並降低其對人民健康的危害程度。

    Climate change and the greenhouse effect have become increasingly worse over time, and emissions from the maritime sector also have a great impact on the environment. For these reasons, in this study, container ship berthing in Taiwan’s ports is taken as the research object, and the life cycle assessment method is used to study the GHG and SOX emissions from various energy sources. In addition, emission reduction strategies scenarios are drafted into two stages to explore whether these strategies could help Taiwan to achieve the INDC, GGRMA, and IMO emissions targets for 2030 and 2050. Finally, this study also assesses improvements in environmental health costs based on reduction of SOX emissions.
    The results show that in terms of GHG emissions, solar power is the highest among renewable energy sources, while thermal power is the highest among non-renewable sources. Regarding SOX emissions, solar power is the highest among renewable energy sources, and 1%S MGO is the highest among non-renewable sources. According to the scenario results, a strategy using 0.1%S MGO and a 4% annual growth shore power rate is the feasible strategy before 2030. Between 2031 to 2050, the strategy using 0.1%S MGO and a 1% annual growth shore power rate is the feasible strategy. The health costs of SOX also can be reduced by 81.85% and 89.23%, respectively, compared to the BAU-2030 and 2050.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 5 1.3 研究目的 7 1.4 研究架構 8 1.5 小結 9 第二章 文獻回顧 10 2.1 船舶岸電系統碳排放之文獻回顧 10 2.2 替代能源環境影響之文獻回顧 12 2.3 生命週期評估法之文獻回顧 14 2.4 外部環境成本評估之文獻回顧 16 2.5 小結 18 第三章 研究方法 25 3.1 生命週期評估方法 25 3.2 能源排放模型建立 30 3.3 小結 38 第四章 實證分析 39 4.1 能源生命週期溫室氣體碳足跡排放量分析 39 4.2 台灣國際商港減排策略情境之假設 53 4.3 台灣國際商港減排策略情境下之排放量分析 57 4.3.1 台灣國際商港貨櫃輪基礎情境(BAU)下之排放量 58 4.3.2 第一階段減排策略情境分析 61 4.3.3 第二階段減排策略情境分析 65 4.3.4 國際商港硫氧化物排放之外部環境健康成本 72 4.4 小結 74 第五章 結論與建議 76 5.1 結論 76 5.2 建議 77 5.3 研究限制 79 5.4 未來研究方向 80 參考文獻 81

    英文文獻
    Agrawal, K. K., et al. (2014). "Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach." International Journal of Environmental Science and Technology 11(4): 1157-1164.
    Atilgan, B. and A. Azapagic (2016). "Renewable electricity in Turkey: Life cycle environmental impacts." Renewable Energy 89: 649-657.
    Axpo. (2019). Environmental Product Declaration (Wildegg-Brugg run-of-river Power Plant | Update 2019). Retrieved April 19, 2020, from https://www.environdec.com/Detail/?Epd=7569.
    Bengtsson, S. (2011). Life cycle assessment of present and future marine fuels.
    Bengtsson, S., Andersson, K., & Fridell, E. (2011). A comparative life cycle assessment of marine fuels: liquefied natural gas and three other fossil fuels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 225(2), 97-110.
    Bengtsson, S., Andersson, K., & Fridell, E. (2011). Life cycle assessment of marine fuels-A comparative study of four fossil fuels for marine propulsion. Gothenburg: Chalmers University of Technology.
    Berechman, J. and P.-H. Tseng (2012). "Estimating the environmental costs of port related emissions: The case of Kaohsiung." Transportation Research Part D: Transport and Environment 17(1): 35-38.
    BSI. (2008). PAS 2050:2011. Retrieved November 5, 2019, from http://shop.bsigroup.com/upload/shop/download/pas/pas2050.pdf
    BSI. (2018). ISO 14067:2018. Retrieved November 5, 2019, from https://www.bsigroup.com/zh-TW/about-bsi/media-centre/press-release/2018-/august/iso-140672018/
    Chàfer, M., Sole-Mauri, F., Solé, A., Boer, D., & Cabeza, L. F. (2019). Life cycle assessment (LCA) of a pneumatic municipal waste collection system compared to traditional truck collection. Sensitivity study of the influence of the energy source. Journal of Cleaner Production, 231, 1122-1135.
    Chatzinikolaou, S. and N. Ventikos (2014). Assessing environmental impacts of ships from a life cycle perspective. Proceedings of the 2nd International Conference on Maritime Technology and Engineering, MARTECH.
    Ding, N., Pan, J., Liu, J., & Yang, J. (2019). An optimization method for energy structures based on life cycle assessment and its application to the power grid in China. Journal of Environmental Management, 238, 18-24.
    DiPietro, P. and U. DOE (2010). "Life cycle analysis of coal and natural gas-fired power plants." National Energy Technology Laboratory US Department of Energy Electric Power Research Institute (EPTI) Coal Fleet May 19: 2012.
    EPA. (2018). Shore Power Technology Assessment at U.S. Ports. Retrieved November 5, 2019, from https://www.epa.gov/ports-initiative/shore-power-technology-assessment-us-ports
    EPA. (2019). Sulfur Dioxide (SO2) Pollution. Retrieved November 5, 2019, from https://www.epa.gov/so2-pollution
    Ercan, T., Zhao, Y., Tatari, O., & Pazour, J. A. (2015). Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options. Energy, 93, 323-334.
    EUROPEAN COMMISSION. (2003). External Costs. Retrieved November 5, 2019, from http://www.externe.info/externe_2006/externpr.pdf
    Fthenakis, V., et al. (2011). "Life cycle inventories and life cycle assessment of photovoltaic systems." International Energy Agency (IEA) PVPS Task 12.
    Gao, C.-k., Na, H.-m., Song, K.-h., Dyer, N., Tian, F., Xu, Q.-j., & Xing, Y.-h. (2019). Environmental impact analysis of power generation from biomass and wind farms in different locations. Renewable and Sustainable Energy Reviews, 102, 307-317.
    García-Gusano, D., Istrate, I. R., & Iribarren, D. (2018). Life-cycle consequences of internalising socio-environmental externalities of power generation. Science of The Total Environment, 612, 386-391.
    García-Valverde, R., et al. (2009). "Life cycle assessment study of a 4.2 kWp stand-alone photovoltaic system." Solar energy 83(9): 1434-1445.
    Gilbert, P., Walsh, C., Traut, M., Kesieme, U., Pazouki, K., & Murphy, A. (2018). Assessment of full life-cycle air emissions of alternative shipping fuels. Journal of Cleaner Production, 172, 855-866.
    HATCH. (2014) Lifecycle Assessment Literature Review of Nuclear, Wind and Natural Gas Power Generation. Retrieved April 19, 2020, from https://cna.ca/wp-content/uploads/2014/05/Hatch-CNA-Report-RevE.pdf
    Hondo, H. (2005). "Life cycle GHG emission analysis of power generation systems: Japanese case." Energy 30(11-12): 2042-2056.
    Huang, Y. (2018). Research on Container Throughput Forecast of Qingdao Port Based on Combined Forecasting Model. In Proceedings of the 4th International Conference on Industrial and Business Engineering (pp. 99-103).
    Hwang, S., et al. (2019). "Life cycle assessment of LNG fueled vessel in domestic services." Journal of Marine Science and Engineering 7(10): 359.
    ICCT. (2017). Greenhouse gas emissions from global shipping, 2013–2015. Retrieved November 5, 2019, from https://theicct.org/publications/GHG-emissions-global-shipping-2013-2015
    IEA. (2018). CO2 Emissions from Fuel Combustion 2018 Highlights. Retrieved November 5, 2019, from https://webstore.iea.org/co2-emissions-from-fuel-combustion-2018-highlights
    IEA. (2018). Renewables 2018. Retrieved November 5, 2019, from https://www.iea.org/renewables2018/
    IMO. (2014). Third IMO Greenhouse Gas Study 2014. Retrieved April 19, 2020, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf
    IMO. (2019). Initial IMO Strategy on reduction of GHG emissions from ships. Retrieved November 5, 2019, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx
    IMO. (2019). Prevention of Air Pollution from Ships. Retrieved November 5, 2019, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx
    IRENA. (2019). Global Energy Transformation: A Roadmap to 2050(2019 Edition). Retrieved April 19, 2020, from file:///C:/Users/user/Downloads/IRENA_Global_Energy_Transformation_2019.pdf
    ISO. (2006). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. Retrieved November 5, 2019, from https://www.iso.org/standard/37456.html
    ISO. (2006). ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines. Retrieved November 5, 2019, from https://www.iso.org/standard/38498.html
    ISO. (2013). ISO/TS 14067:2013 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification and communication. Retrieved November 5, 2019, from https://www.iso.org/standard/59521.html
    ISO. (2018). ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. Retrieved November 5, 2019, from https://www.iso.org/standard/71206.html
    Li, X. and S. Xu (2011). A study on port container throughput prediction based on optimal combined forecasting model in Shanghai port. ICCTP 2011: Towards Sustainable Transportation Systems: 3894-3905.
    Liang, X., Wang, Z., Zhou, Z., Huang, Z., Zhou, J., & Cen, K. (2013). Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production, 39, 24-31.
    López-Aparicio, S., Tønnesen, D., Thanh, T. N., & Neilson, H. (2017). Shipping emissions in a Nordic port: Assessment of mitigation strategies. Transportation Research Part D: Transport and Environment, 53, 205-216.
    Mitropoulos, L. K., Prevedouros, P. D., & Kopelias, P. (2017). Total cost of ownership and externalities of conventional, hybrid and electric vehicle.
    Odeh, N. A. and T. T. Cockerill (2008). "Life cycle analysis of UK coal fired power plants." Energy Conversion and Management 49(2): 212-220.
    Odeh, N. A. and T. T. Cockerill (2008). "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage." Energy Policy 36(1): 367-380.
    Quek, A., Ee, A., Ng, A., & Wah, T. Y. (2018). Challenges in Environmental Sustainability of renewable energy options in Singapore. Energy Policy, 122, 388-394.
    Ruether, J. A., et al. (2004). "Greenhouse gas emissions from coal gasification power generation systems." Journal of Infrastructure Systems 10(3): 111-119.
    Samosir, D. H., Markert, M., & Busse, W. (2017). The technical and business analysis of using shore power connection in the port of Hamburg. Jurnal Teknik ITS, 5(2).
    Song, Q., Wang, Z., Wu, Y., Li, J., Yu, D., Duan, H., & Yuan, W. (2018). Could urban electric public bus really reduce the GHG emissions: A case study in Macau? Journal of Cleaner Production, 172, 2133-2142.
    Spath, P. L. and M. K. Mann (2000). Life cycle assessment of a natural gas combined cycle power generation system, National Renewable Energy Lab., Golden, CO (US).
    Stoppato, A. (2008). Life cycle assessment of photovoltaic electricity generation. Energy, 33(2), 224-232.
    Tainio, M. (2015). "Burden of disease caused by local transport in Warsaw, Poland." Journal of transport & health 2(3): 423-433.
    U.S Department of Energy. (2020). Greet Software. Retrieved April 19, 2020, from https://greet.es.anl.gov/.
    UNFCCC. (2019). Greenhouse Gas. Retrieved November 5, 2019, from https://unfccc.int/process-and-meetings/the-convention/glossary-of-climate-change-acronyms-and-terms
    UNFCCC. (2019). Kyoto Protocol. Retrieved November 5, 2019, from https://unfccc.int/kyoto_protocol
    UNFCCC. (2019). Paris Agreement. Retrieved November 5, 2019, from https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
    Verán-Leigh, D., & Vázquez-Rowe, I. (2019). Life cycle assessment of run-of-river hydropower plants in the Peruvian Andes: a policy support perspective. The International Journal of Life Cycle Assessment, 1-20.
    Wang, L., Wang, Y., Du, H., Zuo, J., Li, R. Y. M., Zhou, Z., . . . Garvlehn, M. P. (2019). A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Applied Energy, 249, 37-45.
    WHO. (2020). Disability-Adjusted Life Year (DALY). Retrieved April 19, 2020, from https://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/
    Winnes, H., Styhre, L., & Fridell, E. (2015). Reducing GHG emissions from ships in port areas. Research in Transportation Business and Management, 17, 73-82.
    Wu, P., Ma, X., Ji, J., & Ma, Y. (2017). Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study. Energy Procedia, 105, 68-74.
    Yeo, M. J., & Kim, Y. P. (2016). Sensitivity of the environmental costs of air pollution caused by SOx, NOx, and PM from power plants applied to the power mix configuration in South Korea. Air Quality, Atmosphere & Health, 9(4), 359-366.
    Yun, P. E. N. G., Xiangda, L. I., Wenyuan, W. A. N. G., Ke, L. I. U., & Chuan, L. I. (2018). A simulation-based research on carbon emission mitigation strategies for green container terminals. Ocean Engineering, 163, 288-298.
    Zhang, P., & Cui, Y. (2011). Research on combination forecast of port container throughput based on Elman neural network. In 2011 IEEE 3rd International Conference on Communication Software and Networks (pp. 567-570). IEEE.

    中文文獻
    中崗科技有限公司. (2019). SimaPro. Retrieved November 5, 2019, from http://www.ixon.com.tw/Products/simapro/simapro.htm
    中華民國交通部.(2018). 交通年鑑. Retrieved April 19, 2020, from https://www.motc.gov.tw/ch/home.jsp?id=21&parentpath=0
    交通部航港局. (2019). 推動船舶使用低硫燃油. Retrieved November 5, 2019, from https://www.motcmpb.gov.tw/Information/Detail/c0ff56a6-99af-4463-8f23-9265bb07f52d?SiteId=1&NodeId=103
    行政院環境保護署. (2019). 國家自定預期貢獻. Retrieved November 5, 2019, from https://enews.epa.gov.tw/enews/enews_ftp/104/1117/174044/%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%EF%BC%88%E8%87%BA%E7%81%A3%EF%BC%89%E3%80%8C%E5%9C%8B%E5%AE%B6%E8%87%AA%E5%AE%9A%E9%A0%90%E6%9C%9F%E8%B2%A2%E7%8D%BB%E3%80%8D(INDC).pdf
    行政院環境保護署. (2019). 溫室氣體減量及管理法. Retrieved November 5, 2019, from https://ghgrule.epa.gov.tw/greenhouse/greenhouse
    行政院環境環保署. (2019). 生命週期評估法. Retrieved November 5, 2019, from https://cfp.epa.gov.tw/carbon/ezcfm/function/platforminfo/flconcept/flfootlifecycle.aspx
    吳宗翰. (2010). 利用生命週期理論評析燃煤電廠溫室氣體排放量之研究, 淡江大學水資源及環境工程學系碩士班學位論文.
    曾詠恩 (2006). 臺灣地區風力發電之潛力分析與生命週期評估, 國立臺北大學自然資源與環境管理所碩士論文.
    經濟部能源局. (2017). 台灣再生能源發電之中長期發展目標. Retrieved November 5, 2019, from https://www.npf.org.tw/12/7865
    經濟部能源局. (2018). 107年度我國燃料燃燒CO2排放統計與分析. Retrieved November 5, 2019, from https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=6998
    經濟部能源局. (2020). 歷史發電量資料. Retrieved April 19, 2020, from https://www.moeaboe.gov.tw/wesnq/
    臺灣港務股份有限公司. (2020). 臺灣地區國際商港進港船舶. Retrieved April 19, 2020, from https://www.twport.com.tw/chinese/cp.aspx?n=18613DC39

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE