簡易檢索 / 詳目顯示

研究生: 陳昭瑋
Chen, Jhao-Wei
論文名稱: 應用多型態影像於皮膚運動評估之電腦手指追蹤系統
Computer finger tracking system for skin movement evaluation by using multiple image modalities
指導教授: 孫永年
Sun, Yung-Nien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 皮膚滑動網格多台相機追蹤動態螢光攝影核磁共振影像對位
外文關鍵詞: skin sliding, grid, multi-camera tracking, fluoroscopy, MR, image registration
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在手部運動評估與臨床應用的研究中,常需要量測相關的運動參數來作為復健和診斷之參考,藉由量測黏貼於皮膚表面的標記點來進行相關運動參數分析的方法已廣泛應用,其中造成量測參數誤差的主要原因之一是:由於運動過程中皮膚的彈性形變與滑動會造成標記點對骨頭產生相對位移,因此皮膚上的標記點並無法代表真正骨頭的運動參數,本論文針對此問題,提出了新的構想來量測皮膚和骨頭之間的相對運動,並提出具參考性的結果。
    本篇論文整合了相機影像、動態螢光攝影和核磁共振造影三種影像的資訊,藉由三種影像資訊互相配合,達到量測皮膚和骨頭之間相對運動的目的。首先我們利用繪製於皮膚上的網格來表示皮膚表面的運動資訊,以多台相機追蹤技術定位出影像上的二維網格,並重構成三維網格模型。並且同步拍攝動態螢光影像以取得骨頭的平面運動資訊,藉由整合兩個系統得到皮膚相對於骨頭在螢光影像平面上的二維滑動資訊。然而三維皮膚與骨頭之相對運動資訊仍然無法獲得,因此,我們加入核磁共振影像來取得手骨的結構資訊和關節參數,建立可驅動的手骨模型,將手骨模型和動態螢光影像作三維二維的影像對位,估算出立體的手骨運動資訊。最後,我們根據三個系統的空間資訊就能量測出三維皮膚與手骨的相對滑動。
    在實驗中,我們將追蹤系統的結果和手動點選的網格進行比較,平均誤差小於一個像素,顯示追蹤系統有不錯的準確性。皮膚滑動的量測方面,我們針對食指和中指的PIP 關節作量測,並且統計了10個正常的受測者資料,得到了皮膚的滑動趨勢:手指在彎曲時皮膚相對於骨頭是向關節方向滑動。這些資料除了可以作為補償運動參數的參考之外,也可以提供給外科醫師作為判斷手部皮膚功能是否正常的依據。

    In the kinematic assessment and clinical application, the kinematic evaluations for rehabilitation and therapeutic are necessary. Thus, the approaches of measurement based on skin-attached markers for motion analyses have been widely applied. However, one of the major facts that cause the measurement error of kinematic parameters is the skin elastic-deformation and sliding that produces the relative displacements of the attached markers with respect to the underlying bones. It implies that bony motion can not be solely represented by the markers. This thesis provides new ideas to measure the skin movements and also give credible conclusions by the experimental results.
    The proposed skin-movement measurement is based on integrating the camera images, fluoroscopy and magnetic resonance imaging technologies. First of all, the specific grid drawn on skin surface was adopted to represent the skin patch of interest. The motion of the three-dimensional grid model associated with this skin-drawn grid will be reconstructed by camera tracking system from multiple-view grid images. Next, the bone images captured by planar fluoroscopy system simultaneously were correlated to the corresponding motion of grid model. Thus, the two-dimensional (2-D) skin movement projected on the fluoroscopy plane can also be measured. However, the actual three-dimensional (3-D) movements were still not available. To this end, the three-dimensional bony hand model must be found by using the additionally magnetic resonance imaging (MRI). After registering the bony hand model to fluoroscopy images, the three-dimensional bony hand motion could be simulated in terms of the inter-poses transformations. Finally, the three-dimensional skin movements with respect to the MRI bony finger can be obtained based on the spatial information from the three systems.
    In the experiments, we compared the tracking results with the ground truth given by experts, and obtained very small tracking errors (less than 1 pixel). Moreover, in the skin movement, the PIP joint of index and middle finger were investigated for skin movements with 10 healthy-hand subjects. The measurement results showed that the skin slide with respect to the underlying bone segment toward the joint center in finger flexion. This information can be used in kinematic compensation, and also available to assist skin surgical judgments.

    第一章 序論 1 1-1.研究動機與背景 1 1-2.相關研究 2 1-3.論文概述 6 第二章 實驗材料與環境設定 8 2-1.標記點與網格設計 8 2-1-1.網格繪製 8 2-1-2.特殊標記點 9 2-2.相機攝影 10 2-2-1.四台同步相機 10 2-2-2.相機的參數 12 2-2-3.相機的校正步驟 13 2-3.動態螢光攝影(Fluoroscopy) 15 2-4.核磁共振造影(MRI) 18 第三章 應用多台相機於皮膚運動追蹤 20 3-1.網格初始化 22 3-1-1.標記點定位 22 3-1-2.網格頂點偵測 23 3-1-3.擷取影像樣板 25 3-1-4.建立虛擬模型 25 3-1-5.建立參數化十字樣板 26 3-2.追蹤演算法 29 3-2-1.網格頂點搜尋 29 3-2-2.虛擬模型更新 32 3-2-3.影像樣板和參數化十字樣板更新 34 3-2-4.參數預測 37 3-3.三維網格重建 41 3-3-1.三維重構方法 41 3-3-2.三維網格重構結果 42 第四章 應用核磁共振與螢光影像於手骨運動重建 44 4-1.手骨模型建立 46 4-2.以模型為基礎之三維二維影像對位 47 4-2-1.動態螢光影像輪廓擷取 47 4-2-2.模型投影與輪廓擷取 50 4-2-3.輪廓相似度評估 52 4-3.手骨運動重建結果 54 第五章 皮膚相對於手骨之運動量測 55 5-1.二維皮膚滑動量測 55 5-1-1建立三維網格和平面骨頭資訊之間的關係 55 5-1-2量測方法 58 5-2.三維皮膚滑動量測 63 第六章 實驗結果與討論 67 6-1.二維網格追蹤正確性的評估 67 6-2.以假體實驗評估系統的準確度 71 6-3.皮膚滑動量測結果 77 6-4.皮膚滑動量測結果之評估 92 第七章 結論與未來展望 95 7-1.結論 95 7-2.未來展望 96 參考文獻 98

    [1] 陳彥廷、孫永年,”以模型為基礎之電腦手指連續運動影像分析系統”,國立成功大學資訊工程研究所碩士論文,2006。
    [2] 何聖斌、孫永年,”使用多台相機的三維手指影像運動分析系統”, 國立成功大學資訊工程研究所碩士論文,2007。
    [3] Li-Chieh Kuo, Fong-Chin Su, Haw-Yen Chiub, Chin-Yin Yu, “Feasibility of using a video-based motion analysis system for measuring thumb kinematics”, Journal of Biomechanics, vol.35, pp. 1499-1506, 2002.
    [4] Li-Chieh Kuo, William P. Cooney III, Mineo Oyama, Kenton R, Kaufman, Fong-Chin Su, Kai-Nan An, Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint,” Clinical Biomechanics, vol.18,pp. 558–563,2003.
    [5] 劉愷文、孫永年,”利用動態網格模型達成多台相機追蹤之手指表面重構與運動評估” 國立成功大學資訊工程研究所碩士論文,2008。
    [6] 吳佳興、孫永年,”以模型為基礎之影像對位系統應用於立體膝關節運動重構” 國立成功大學資訊工程研究所碩士論文,2009。
    [7] Igor Guskov, Sergey Klibanov, Benjamin Byant, “Trackable Surfaces,” SIGGRAPH, 2003.
    [8] Ryan White, Keenan Crane, D.A. Forsyth, “Capturing and Animating Occluded Cloth” SIGGRAPH, 2007.
    [9] B Liu, R Manner, “An Efficient and Accurate Method for 3D-Point Reconstruction from Multiple Views, “International Journal of Computer Vision“, 65(3), pp. 175–188, 2005.
    [10] S. A. Banks, W. A. Hodge, “Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy,” IEEE Trans. on Biomedical Engineering, vol. 43, no. 6, pp. 638-649, 1996.
    [11] H. Rahman, B. J. Fregly, S. A. Banks, “Accurate measurement of three-dimensional natural knee kinematics using single-plane fluoroscopy,” Summer Bioengineering Conference, 2003.
    [12] H. Haneishi, S. Hujita, T. Kohno, M. Suzuki, J. Miyagi, H. Moriya, “Estimation of three-dimensional knee joint movement using bi-plane X-ray fluoroscopy and 3D-CT,” Medical Imaging 2005: Image Processing, Proceedings of the SPIE, vol. 5747, pp.1667-1673, 2005.
    [13] Aurelio Cappozzo, Angelo Cappello, Ugo Della Croce, Francesco Pensalfini,” Surface-Marker Cluster Design Criteria for 3-D Bone Movement Reconstruction”, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 44, no.12 ,December, 1997
    [14] Luigi Lucchetti, Aurelio Cappozzo, Angelo Cappello, Ugo Della Croce, ” Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics”, Journal of Biomechanics ,1998
    [15] Eugene J. Alexander, Thomas P. Andriacchi, “Correcting for deformation in skin-based marker systems” Journal of Biomechanics ,2001.
    [16] P.Cerveri, A.Pedotti, G.Ferrigno, ” Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation”, Journal of Biomechanics ,2005.
    [17] Jae Hun Ryu, Natsuki Miyata, Makiko Kouchi, Masaaki Mochimaru, Kwan H. Lee, “Analysis of skin movement with respect to flexional bone motion using MR images of a hand”, Journal of Biomechanics , 2006.
    [18] Z. Zhang, “A flexible new technique for camera calibration”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pp. 1330-1334, 2000.
    [19] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281-297.
    [20] G. E. Forsythe, M. A. Malcolm, and C. B., “Computer Methods for Mathematical Computations,” Englewood Cliffs, New Jersey. Prentice Hall, 1977.
    [21] Matthews, I., Ishikawa, T., & Baker, S. “The template update problem.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), pp.810–815. ,2004.
    [22] Hongyou Li, Tongqing Wang, Junyong Ye, “Improved template update strategy for image alignment”, Intelligent Control and Automation, 2008.
    [23] Greg Welch, Gary Bishop ,“An Introduction to the Kalman Filter,” Technical Report TR 95-041, University of North Carolina at Chapel Hill Department of Computer Science,1995.
    [24] H.C. Chen, I.M. Jou, C.K. Wang, F.C. Su, Y.N. Sun, “Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation” Med. Phys., 37 (6), June 2010.
    [25] G. Gerig, O. Kubler, R. Kikinis, F. A. Jolesz, “Nonlinear anisotropic filtering of MRI data,” IEEE Trans. on Medical Imaging, vol. 11, no. 2, pp. 221-232, Jun 1992.
    [26] J. F. Canny, “A computational approach to edge detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986.
    [27] O. Cuisenaire, “Distance transformations: fast algorithms and applications to medical image processing,” PhD thesis, Telecommunications Laboratory, UCL, Louvain-la-Neuve, Belgium, 1999.
    [28] G. Borgefors, “Hierarchical chamfer matching: a parametric edge matching algorithm,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp. 849-865, 1988.
    [29] W. H. Press, W. T. Vetterling, S. A. Teukolsky, B. P. Flannery, “Numerical recipes in C 2nd edition,” Cambridge University Press, Cambridge, England, 1992.
    [30] Chin-Seng Chua, Haiying Guan, Yeong-Khing Ho, “Model-based 3D hand posture estimation from a single 2D image,” Image and Vision Computing, 2002.
    [31] Alex Mohr, Michael Gleicher, “Building Efficient, Accurate Character Skins from Examples,” SIGGRAPH, 2003.
    [32] Ladislav Kavan, “Spherical Blend Skinning: A Real-time Deformation of Articulated Models,” ACM, 2005.

    下載圖示 校內:2013-08-27公開
    校外:2013-08-27公開
    QR CODE