| 研究生: |
張勝凱 Chang, Sheng-Kai |
|---|---|
| 論文名稱: |
應用於物聯網之超低功耗振盪器與多通道多模無線發射機 Ultralow-Power Oscillators and Multichannel Multimode Wireless Transmitter for IoT Applications |
| 指導教授: |
鄭光偉
Cheng, Kuang-Wei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 物聯網(IoT) 、無線感測器網路(WSN) 、超低功耗(ULP) 、斬波器 、鎖頻迴路 、Colpitts壓控振盪器 、電流重用 、轉導增強 、開關鍵控(OOK) 、頻移鍵控(FSK) 、相移鍵控(PSK) 、頻率合成器 、多相位注入鎖定 、N路徑濾波器 、佔空比校正 、頻率倍增 、D類邊緣組合功率放大器 |
| 外文關鍵詞: | Internet-of-thing (IoT), wireless sensor network (WSN), ultralow power (ULP), chopper, frequency-locked loop, Colpitts VCO, current-reuse, gm-enhanced, on-off keying (OOK), frequency-shift keying (FSK), phase-shift keying (PSK), frequency synthesizer, multiphase injection locking, N-path filter, duty cycle correction, frequency multiplication, class-D edge-combining power amplifier |
| 相關次數: | 點閱:130 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在物聯網的願景中,每個物品都有通過部署無線感測器連接到網路的潛力。然而,這些物聯網設備在功耗預算方面面臨嚴重的限制,其中一些甚至需要依賴無電池的能量收集解決方案。隨著物聯網概念的迅速發展,無線感測節點必須具備低功耗、高效率和小型化的特性。本論文探討了物聯網應用中超低功耗振盪器和無線發射機的關鍵挑戰。研究聚焦於三項主要成果,而每項成果都為無線系統的進步做出貢獻。
第一項成果介紹了基於雙斬波穩定技術的晶片上鎖頻振盪器。這項創新旨在透過減輕對溫度敏感的非理想效應來提高頻率穩定性。該原型採用180 nm CMOS製程實現,有效面積為0.3 mm2。測量結果顯示在工作頻率為250 kHz運行的鎖頻振盪器實現了27.1 ppm/°C的溫度穩定性和2.73 ppm的長期穩定性,並且功耗僅為293 nW。與無斬波穩定技術相比,低頻閃爍雜訊的抑制使其長期穩定性提高了16倍。
第二項成果展示了專為低功耗和低相位雜訊應用而設計的Colpitts電壓控制振盪器,利用轉導增強和電流重用技術來提高電流效率。該原型採用0.18 μm CMOS製程實現,在2.34至2.55 GHz工作頻率範圍下表現出8.6%的調諧範圍。此振盪器的功耗為1.4 mW,並在1 MHz頻率偏移處實現了卓越的−122.85 dBc/Hz的相位雜訊。
第三項成果提出了一個在419-445 MHz頻段中運作的超低功耗多通道多模式無線發射機。該發射機採用多相注入鎖定和倍頻技術,並由低頻相位旋轉型的頻率合成器實現對多通道和FSK調變的支援。透過N路徑濾波器和雙級注入鎖定環形振盪器,此架構有效衰減了合成器量化雜訊所造成的遠端相位雜訊。相位調變是透過調整振盪器自由運行頻率和注入頻率之間的偏移頻率以控制其穩態相位偏移來實現。最後,利用具有高能效的電流模式D類邊緣組合功率放大器實現5倍頻率放大以生成所需的載波頻率。該原型採用90 nm CMOS製程製造,在0.75 V電源電壓下提供−7 dBm的輸出功率,功耗僅為870 μW。此發射器支援OOK、FSK和QPSK調製的多功能性,實現了11 pJ/bit的高能效和23%的全局效率。
總而言之,這項研究應對了超低功耗振盪器和無線發射機的關鍵挑戰,並提出了有助於物聯網應用發展的創新解決方案。這些成果凸顯了增強無線系統穩定性、效率和多功能性的潛力,為未來的發展鋪平了道路。
In the vision of the Internet of Things (IoT), every object has the potential to be internet-connected through the deployment of wireless sensors. Nevertheless, these IoT devices face severe constraints in terms of power budgets, with some relying on battery-less energy harvesting solutions. With the rapid development of the IoT concept, wireless sensor nodes must possess characteristics such as low power consumption, high efficiency, and compact form factors. This dissertation addresses key challenges in ultralow-power oscillators and wireless transmitters for Internet of Things (IoT) applications. The research focuses on three major achievements, each contributing to the advancement of wireless systems.
The first achievement introduces a frequency-locked on-chip oscillator based on a double chopper stabilization technique. This innovation aims to improve frequency stability by mitigating temperature-sensitive nonidealities. Implemented in a 180-nm CMOS process with an active area of 0.3 mm2, the prototype demonstrates significant improvements. The frequency-locked oscillator, operating at 250 kHz, achieves temperature stability of 27.1 ppm/°C and long-term stability of 2.73 ppm, with a power consumption of only 293 nW. The suppression of low-frequency flicker noise results in a 16X improvement in long-term stability compared to the non-chopper technique.
The second achievement presents a Colpitts voltage-controlled oscillator (VCO) designed for low-power and low-phase-noise applications. The VCO utilizes gm-enhanced and current-reuse techniques to enhance current efficiency. Implemented in a 0.18 μm CMOS process, the prototype operates in the frequency range of 2.34 to 2.55 GHz with an 8.6% tuning range. With a 1.4 mW power consumption, the VCO attains a remarkable phase noise of –122.85 dBc/Hz at a 1 MHz frequency offset.
The third achievement proposes an ultralow-power multichannel multimode wireless transmitter operating in the 419-445 MHz frequency band. The transmitter employs multiphase injection locking and frequency multiplication techniques, supported by a low-frequency phase-rotation-based frequency synthesizer for multiple channels and FSK modulation. Through an N-path filter and a two-stage injection-locked ring oscillator, the far-out phase noise induced by the quantization noise of the synthesizer is effectively attenuated. Phase modulation is accomplished by adjusting the offset frequency between the free-running frequency of the oscillator and the injected frequency. Finally, a current mode class-D edge-combining power amplifier is utilized for 5X frequency multiplication for generating the necessary carrier frequency. Manufactured using a 90 nm CMOS process, the transmitter delivers a −7 dBm output power, consuming only 870 μW from a 0.75 V supply voltage. It demonstrates versatility with OOK, FSK, and QPSK modulation, attaining notable energy efficiency at 11 pJ/bit and a 23% global efficiency.
In summary, this research addresses critical challenges in ultralow-power oscillators and wireless transmitters, presenting innovative solutions that contribute to the advancement of IoT applications. The achievements underscore the potential for enhanced stability, efficiency, and versatility in wireless systems, paving the way for future developments in the field.
[1] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, "Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges," in Int. Conf. Frontiers of Inf. Technol., 2012, pp. 257-260.
[2] J. Blanckenstein, J. Klaue, and H. Karl. (2015) A Survey of Low-Power Transceivers and Their Applications. IEEE Circuits Syst. Mag. 6-17.
[3] B. Kundaliya, "Challenges of WSNs in IoT," in Wireless Sensor Networks-Design, Deployment and Applications: IntechOpen, 2020.
[4] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart Dust: Communicating with a Cubic-Millimeter Computer," Computer, vol. 34, no. 1, pp. 44-51, 2001.
[5] Y. Lee et al., "A Modular 1mm3 Die-Stacked Sensing Platform with Optical Communication and Multi-Modal Energy Harvesting," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 402-404.
[6] D. Yoon, D. Sylvester, and D. Blaauw, "A 5.58nW 32.768kHz DLL-Assisted XO for Real-Time Clocks in Wireless Sensing Applications," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 366-368.
[7] K. Hsiao, "A 1.89nW/0.15V Self-Charged XO for Real-Time Clock Generation," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2014, pp. 298-299.
[8] S. K. Chang, K. W. Chen, S. D. Yang, C. L. Yang, and K. W. Cheng, "An Autonomous Wireless Transmitter with Piezoelectric Energy Harvester from Short-Duration Vibrations," in IEEE Int. Symp. Circuits and Systems (ISCAS), 2018, pp. 1-4.
[9] G. Kim et al., "A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting," in IEEE Symp. VLSI Circuits, 2014, pp. 1-2.
[10] H. Reinisch et al., "An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1728-1741, 2011.
[11] H.-W. Chen and W.-C. Yen, "A Low Power and Fast Wake Up Circuit," in IEEE Int. Symp. Circuits and Systems (ISCAS), 2004, vol. 2, pp. II-293.
[12] M. Choi, T. Jang, S. Bang, Y. Shi, D. Blaauw, and D. Sylvester, "A 110 nW Resistive Frequency Locked On-Chip Oscillator with 34.3 ppm/°C Temperature Stability for System-on-Chip Designs," IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2106-2118, 2016.
[13] B. Zhao and H. Yang, Design of radio-frequency transceivers for wireless sensor networks. INTECH Open Access Publisher, 2010.
[14] D. G. Lee, L. G. Salem, and P. P. Mercier. (2015) Narrowband Transmitters: Ultralow-Power Design. IEEE Microw. Mag. 130-142.
[15] K. H. Teng and C. H. Heng, "A 370-pJ/b Multichannel BFSK/QPSK Transmitter Using Injection-Locked Fractional-N Synthesizer for Wireless Biotelemetry Devices," IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 867-880, 2017.
[16] M. H. W. Loo et al., "Fully-Integrated Timers for Ultra-Low-Power Internet-of-Things Nodes—Fundamentals and Design Techniques," IEEE Access, vol. 10, pp. 65936-65950, 2022.
[17] "IEEE Standard for Jitter and Phase Noise," in IEEE Std 2414-2020, ed, 2021, pp. 1-42.
[18] IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology--Random Instabilities, 2022.
[19] S. Y. Lu and Y. T. Liao, "A Low-Power, Differential Relaxation Oscillator With the Self-Threshold-Tracking and Swing-Boosting Techniques in 0.18-μm CMOS," IEEE J. Solid-State Circuits, vol. 54, no. 2, pp. 392-402, 2019.
[20] S. Dai and J. K. Rosenstein, "A 14.4nW 122KHz Dual-Phase Current-Mode Relaxation Oscillator for Near-Zero-Power Sensors," in IEEE Custom Integr. Circuits Conf. (CICC), 2015, pp. 1-4.
[21] Y. H. Chee, A. M. Niknejad, and J. M. Rabaey, "An Ultra-Low-Power Injection Locked Transmitter for Wireless Sensor Networks," IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1740-1748, 2006.
[22] S. Diao et al., "A 50-Mb/s CMOS QPSK/O-QPSK Transmitter Employing Injection Locking for Direct Modulation," IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 120-130, 2012.
[23] K. W. Cheng, S. K. Chang, B. S. Li, and Z. T. Tsai, "Design and Analysis of a Resistive Frequency-Locked Oscillator With Long-Term Stability Using Double Chopper Stabilization," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 2, pp. 655-666, 2023.
[24] K. W. Cheng, S. K. Chang, and Y. C. Huang, "Low-Power and Low-Phase-Noise Gm-Enhanced Current-Reuse Differential Colpitts VCO," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 66, no. 5, pp. 733-737, 2019.
[25] K. W. Cheng, S. K. Chang, S. T. Chang, S. L. Li, and Y. C. Huang, "An 11 pJ/Bit Multichannel OOK/FSK/QPSK Transmitter With Multi-Phase Injection-Locking and Frequency Multiplication Techniques," IEEE Trans. Circuits Syst. I, Reg. Papers, pp. 1-13, 2023.
[26] A. Paidimarri, D. Griffith, A. Wang, G. Burra, and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1866-1877, 2016.
[27] K. Hsiao, "A 32.4 ppm/°C 3.2-1.6V Self-Chopped Relaxation Oscillator with Adaptive Supply Generation," in IEEE Symp. VLSI Circuits, 2012, pp. 14-15.
[28] H. Jiang, P. P. Wang, P. P. Mercier, and D. A. Hall, "A 0.4-V 0.93-nW/kHz Relaxation Oscillator Exploiting Comparator Temperature-Dependent Delay to Achieve 94-ppm/°C Stability," IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 3004-3011, 2018.
[29] S. Jeong, I. Lee, D. Blaauw, and D. Sylvester, "A 5.8 nW CMOS Wake-Up Timer for Ultra-Low-Power Wireless Applications," IEEE J. Solid-State Circuits, vol. 50, no. 8, pp. 1754-1763, 2015.
[30] D. Griffith, P. T. Røine, J. Murdock, and R. Smith, "A 190nW 33kHz RC Oscillator with ±0.21% Temperature Stability and 4ppm Long-Term Stability," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2014, pp. 300-301.
[31] M. Choi, S. Bang, T. Jang, D. Blaauw, and D. Sylvester, "A 99nW 70.4kHz Resistive Frequency Locking On-Chip Oscillator with 27.4ppm/ºC Temperature Stability," in IEEE Symp. VLSI Circuits, 2015, pp. C238-C239.
[32] S. K. Chang, Z. T. Tsai, and K. W. Cheng, "A 250 kHz Resistive Frequency-Locked On-Chip Oscillator with 24.7 ppm/°C Temperature Stability and 2.73 ppm Long-Term Stability," in IEEE Int. Symp. Circuits and Systems (ISCAS), 2020, pp. 1-4.
[33] G. Ç, S. Pan, and K. A. A. Makinwa, "A 16 MHz CMOS RC Frequency Reference With ±90 ppm Inaccuracy From −45 °C to 85 °C," IEEE J. Solid-State Circuits, vol. 57, no. 8, pp. 2429-2437, 2022.
[34] G. Zhang, K. Yayama, A. Katsushima, and T. Miki, "A 3.2 ppm/°C Second-Order Temperature Compensated CMOS On-Chip Oscillator Using Voltage Ratio Adjusting Technique," IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 1184-1191, 2018.
[35] A. Khashaba, J. Zhu, N. Pal, M. G. Ahmed, and P. K. Hanumolu, "A 32-MHz, 34-μW Temperature-Compensated RC Oscillator Using Pulse Density Modulated Resistors," IEEE J. Solid-State Circuits, vol. 57, no. 5, pp. 1470-1479, 2022.
[36] T. Jang, M. Choi, S. Jeong, S. Bang, D. Sylvester, and D. Blaauw, "A 4.7nW 13.8ppm/°C Self-Biased Wakeup Timer Using a Switched-Resistor Scheme," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2016, pp. 102-103.
[37] J. Jung, I. Kim, S. Kim, Y. Lee, and J. Chun, "A 1.08-nW/kHz 13.2-ppm/°C Self-Biased Timer Using Temperature-Insensitive Resistive Current," IEEE J. Solid-State Circuits, vol. 53, no. 8, pp. 2311-2318, 2018.
[38] D. S. Truesdell, A. Dissanayake, and B. H. Calhoun, "A 0.6-V 44.6-fJ/Cycle Energy-Optimized Frequency-Locked Loop in 65-nm CMOS With 20.3-ppm/°C Stability," IEEE Solid-State Circuits Letters, vol. 2, no. 10, pp. 223-226, 2019.
[39] M. Ding, Z. Zhou, S. Traferro, Y. H. Liu, C. Bachmann, and F. Sebastiano, "A 33-ppm/°C 240-nW 40-nm CMOS Wakeup Timer Based on a Bang-Bang Digital-Intensive Frequency-Locked-Loop for IoT Applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 7, pp. 2263-2273, 2020.
[40] D. S. Truesdell, S. Li, and B. H. Calhoun, "A 0.5-V 560-kHz 18.8-fJ/Cycle On-Chip Oscillator With 96.1-ppm/°C Steady-State Stability Using a Duty-Cycled Digital Frequency-Locked Loop," IEEE J. Solid-State Circuits, vol. 56, no. 4, pp. 1241-1253, 2021.
[41] Y. Chen, M. Babaie, and R. B. Staszewski, "A 350-mV 2.4-GHz Quadrature Oscillator with Nearly Instantaneous Start-Up Using Series LC Tanks," in IEEE Asian Solid-State Circuits Conference (A-SSCC), 2017, pp. 104-108.
[42] R. Aparicio and A. Hajimiri, "A Noise-Shifting Differential Colpitts VCO," IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, 2002.
[43] Y. Seok-Ju, S. So-Bong, C. Hyung-Chul, and L. Sang-Gug, "A 1mW Current-Reuse CMOS Differential LC-VCO with Low Phase Noise," in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, 2005, pp. 540-616 Vol. 1.
[44] K. W. Ha, H. Ryu, J. H. Lee, J. G. Kim, and D. Baek, "Gm-Boosted Complementary Current-Reuse Colpitts VCO With Low Power and Low Phase Noise," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 418-420, 2014.
[45] L. Xiaoyong, S. Shekhar, and D. J. Allstot, "Gm-boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-µm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, 2005.
[46] A. W. L. Ng and H. C. Luong, "A 1-V 17-GHz 5-mW CMOS Quadrature VCO Based on Transformer Coupling," IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933-1941, 2007.
[47] K. W. Cheng and M. Je, "A Current-Switching and gm-Enhanced Colpitts Quadrature VCO," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 143-145, 2013.
[48] B. Hong and A. Hajimiri, "A Phasor-Based Analysis of Sinusoidal Injection Locking in LC and Ring Oscillators," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 355-368, 2019.
[49] J. C. Chien and L. H. Lu, "Analysis and Design of Wideband Injection-Locked Ring Oscillators With Multiple-Input Injection," IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1906-1915, 2007.
[50] N. Lanka, S. Patnaik, and R. Harjani, "Understanding the Transient Behavior of Injection Locked LC Oscillators," in Proc. IEEE Custom Integr. Circuits Conf. (CICC), 2007, pp. 667-670.
[51] S. Kalia, M. Elbadry, B. Sadhu, S. Patnaik, J. Qiu, and R. Harjani, "A Simple, Unified Phase Noise Model for Injection-Locked Oscillators," in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2011, pp. 1-4.
[52] Y. H. Liu et al., "A 2.7nJ/b Multi-Standard 2.3/2.4GHz Polar Transmitter for Wireless Sensor Networks," in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 448-450.
[53] V. Karam, P. H. R. Popplewell, A. Shamim, J. Rogers, and C. Plett, "A 6.3 GHz BFSK Transmitter with On-Chip Antenna for Self-Powered Medical Sensor Applications," in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2007, pp. 101-104.
[54] K. Abdelhalim, L. Kokarovtseva, J. L. P. Velazquez, and R. Genov, "915-MHz FSK/OOK Wireless Neural Recording SoC With 64 Mixed-Signal FIR Filters," IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2478-2493, 2013.
[55] M. S. Jahan, J. Langford, and J. Holleman, "A Low-Power FSK/OOK Transmitter for 915 MHz ISM Band," in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2015, pp. 163-166.
[56] M. A. A. Ibrahim and M. Onabajo, "A Low-Power BFSK Transmitter Architecture for Biomedical Applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 5, pp. 1527-1540, 2020.
[57] K. Natarajan, D. Gangopadhyay, and D. Allstot, "A PLL-based BFSK Transmitter with Reconfigurable and PVT-Tolerant Class-C PA for MedRadio & ISM (433MHz) Standards," in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2013, pp. 67-70.
[58] Y. H. Liu and T. H. Lin, "A Wideband PLL-Based G/FSK Transmitter in 0.18 μm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2452-2462, 2009.
[59] P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan, "A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications," IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1463-1474, 2014.
[60] L. C. Liu, M. H. Ho, and C. Y. Wu, "A Medradio-Band Low-Energy-Per-Bit CMOS OOK Transceiver for Implantable Medical Devices," in IEEE Biomed. Circuits Syst. Conf. (BioCAS), 2011, pp. 153-156.
[61] J. Pandey and B. P. Otis, "A Sub-100 μW MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication," IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1049-1058, 2011.
[62] S. J. Cheng, Y. Gao, W. D. Toh, Y. Zheng, M. Je, and C. H. Heng, "A 110pJ/b Multichannel FSK/GMSK/QPSK/π/4-DQPSK Transmitter with Phase-Interpolated Dual-Injection DLL-Based Synthesizer Employing Hybrid FIR," in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, 2013, pp. 450-451.
[63] L. Xia, J. Cheng, N. E. Glover, and P. Chiang, "0.56 V, –20 dBm RF-Powered, Multi-Node Wireless Body Area Network System-on-a-Chip With Harvesting-Efficiency Tracking Loop," IEEE J. Solid-State Circuits, vol. 49, no. 6, pp. 1345-1355, 2014.
[64] X. Liu, M. M. Izad, L. Yao, and C. H. Heng, "A 13 pJ/bit 900 MHz QPSK/16-QAM Band Shaped Transmitter Based on Injection Locking and Digital PA for Biomedical Applications," IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2408-2421, 2014.
[65] K. H. Teng, T. Wu, X. Liu, Z. Yang, and C. H. Heng, "A 400 MHz Wireless Neural Signal Processing IC With 625× On-Chip Data Reduction and Reconfigurable BFSK/QPSK Transmitter Based on Sequential Injection Locking," IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 547-557, 2017.
[66] X. Liu et al., "A 103 pJ/bit Multi-channel Reconfigurable GMSK/PSK/16-QAM Transmitter with Band-shaping," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2014, pp. 269-272.
[67] B. Razavi, "A Study of Injection Locking and Pulling in Oscillators," IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
[68] C. C. Lin, H. Hu, and S. Gupta, "Improved Performance Tradeoffs in Harmonic Injection-Locked ULP TX for Sub-GHz Radios," IEEE Trans. Microw. Theory Techn., vol. 69, no. 6, pp. 2885-2898, 2021.
[69] H. Hu, C. C. Lin, and S. Gupta, "A 197.1-μW Wireless Sensor SoC With an Energy-Efficient Analog Front-End and a Harmonic Injection-Locked OOK TX," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 6, pp. 2444-2456, 2021.
[70] C. C. Lin, H. Hu, and S. Gupta, "Spur Minimization Techniques for Ultra-Low-Power Injection-Locked Transmitters," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 11, pp. 3643-3655, 2020.
[71] H. Huang, M. Zhang, G. Li, and Z. Wang, "A 2Mbps sub-100µW Crystal-less RF Transmitter with Energy Harvesting for Multi-Channel Neural Signal Acquisition," in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2019, pp. 157-160.
[72] C. Ma, C. Hu, J. Cheng, L. Xia, and P. Y. Chiang, "A Near-Threshold, 0.16 nJ/b OOK-Transmitter With 0.18 nJ/b Noise-Cancelling Super-Regenerative Receiver for the Medical Implant Communications Service," IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 6, pp. 841-850, 2013.
[73] B. Chatterjee, A. Srivastava, D. H. Seo, D. Yang, and S. Sen, "A Context-aware Reconfigurable Transmitter with 2.24 pJ/bit, 802.15.6 NB-HBC and 4.93 pJ/bit, 400.9 MHz MedRadio Modes with 33.6% Transmit Efficiency," in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2020, pp. 75-78.
[74] H. C. Cheng, Y. T. Chen, P. H. Chen, and Y. T. Liao, "An Optically-Powered 432 MHz Wireless Tag for Batteryless Internet-of-Things Applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 9, pp. 3288-3295, 2019.
[75] J. Zarate-Roldan et al., "0.2-nJ/b Fast Start-Up Ultralow Power Wireless Transmitter for IoT Applications," IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 259-272, 2018.
[76] Y. Guo, Y. Li, Z. Weng, H. Jiang, and Z. Wang, "A 0.66mW 400 MHz/900 MHz Transmitter IC for In-Body Bio-Sensing Applications," IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 2, pp. 252-265, 2022.
[77] S. Mondal and D. A. Hall, "A 67-μW Ultra-Low Power PVT-Robust MedRadio Transmitter," in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2020, pp. 327-330.
[78] Y. L. Tsai, C. Y. Lin, B. C. Wang, and T. H. Lin, "A 330-μW 400-MHz BPSK Transmitter in 0.18-μm CMOS for Biomedical Applications," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 63, no. 5, pp. 448-452, 2016.
[79] A. Bakker, K. Thiele, and J. H. Huijsing, "A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset," IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1877-1883, 2000.
[80] J. Mikulić, G. Schatzberger, and A. Barić, "Post-Manufacturing Process and Temperature Calibration of a 2-MHz On-Chip Relaxation Oscillator," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 10, pp. 4076-4089, 2021.
[81] F. Zhao and F. F. Dai, "A 0.6-V Quadrature VCO With Enhanced Swing and Optimized Capacitive Coupling for Phase Noise Reduction," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1694-1705, 2012.
[82] A. Poon, A. Chang, H. Samavati, and S. S. Wong, "Reduction of Inductive Crosstalk Using Quadrupole Inductors," IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, 2009.
[83] N. M. Neihart, D. J. Allstot, M. Miller, and P. Rakers, "Twisted Inductors for Low Coupling Mixed-Signal and RF Applications," in IEEE Custom Integr. Circuits Conf. (CICC), 2008, pp. 575-578.
[84] A. Mostajeran, M. S. Bakhtiar, and E. Afshari, "A 2.4GHz VCO with FOM of 190dBc/Hz at 10kHz-to-2MHz Offset Frequencies in 0.13μm CMOS Using an ISF Manipulation Technique," in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, 2015, pp. 1-3.
[85] Y. J. Moon, Y. S. Roh, C. Y. Jeong, and C. Yoo, "A 4.39–5.26 GHz LC-Tank CMOS Voltage-Controlled Oscillator With Small VCO-Gain Variation," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 524-526, 2009.
[86] Y. P. Su, W. Y. Hu, J. W. Lin, Y. C. Chen, S. Sezer, and S. J. Chen, "Low power Gm-boosted differential Colpitts VCO," in IEEE Int. SOC Conf., 2011, pp. 247-250.
[87] J.-F. Huang, K.-L. Chen, W.-C. Lai, and W.-J. Lin, "A fully integrated 5.6 GHz low-phase noise Colpitts VCO/QVCO using programmable switched codes," Microw. Optical Techn. Lett., vol. 55, no. 7, 2013.
[88] A. Elkholy, A. Elmallah, M. G. Ahmed, and P. K. Hanumolu, "A 6.75–8.25-GHz −250-dB FoM Rapid ON/OFF Fractional-N Injection-Locked Clock Multiplier," IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1818-1829, 2018.
[89] X. Meng, L. Zhou, F. Lin, and C. H. Heng, "A Low-Noise Digital-to-Frequency Converter Based on Injection-Locked Ring Oscillator and Rotated Phase Selection for Fractional-N Frequency Synthesis," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 6, pp. 1378-1389, 2019.
[90] C.-H. Heng and B.-S. Song, "A 1.8-GHz CMOS Fractional-N Frequency Synthesizer With Randomized Multiphase VCO," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 848-854, 2003.
[91] E. A. Vittoz, M. G. R. Degrauwe, and S. Bitz, "High-Performance Crystal Oscillator Circuits: Theory and Application," IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 774-783, 1988.
[92] I. Galton, "Delta-Sigma Data Conversion in Wireless Transceivers," IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 302-315, 2002.
[93] S. Pamarti, L. Jansson, and I. Galton, "A Wideband 2.4-GHz Delta-Sigma Fractional-N PLL With 1-Mb/s In-Loop Modulation," IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 49-62, 2004.
[94] A. Ghaffari, E. A. M. Klumperink, M. C. M. Soer, and B. Nauta, "Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification," IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 998-1010, 2011.
[95] M. Darvishi, R. v. d. Zee, and B. Nauta, "Design of Active N-Path Filters," IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2962-2976, 2013.
[96] G. Chowdhury and A. Hassibi, "An On-Chip CMOS Temperature Sensor Using Self-Discharging P-N Diode in a Δ-Σ Loop," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 6, pp. 1887-1896, 2018.
[97] H. Kobayashi, J. M. Hinrichs, and P. M. Asbeck, "Current-Mode Class-D Power Amplifiers for High-Efficiency RF Applications," IEEE Trans. Microw. Theory Techn., vol. 49, no. 12, pp. 2480-2485, 2001.
[98] M. Silva-Pereira, M. Assunção, and J. C. Vaz, "Analysis and Design of Current Mode Class-D Power Amplifiers With Finite Feeding Inductors," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 5, pp. 1292-1301, 2020.
[99] Y. H. Liu, C. L. Li, and T. H. Lin, "A 200-pJ/b MUX-Based RF Transmitter for Implantable Multichannel Neural Recording," IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp. 2533-2541, 2009.
[100] J. Tao, N. Wang, E. J. Ng, Y. Zhu, and C. H. Heng, "A 5-pJ/Bit OOK Transmitter Using MEMS-Based RF Oscillator for IoT Application in 180-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 10, pp. 1158-1161, 2021.
[101] A. Srivastava, D. Das, and M. S. Baghini, "Design and Implementation of 0.23 nJ/bit Reference-Spur-Free FSK/OOK Transmitter at 400 MHz for Wearable Health Monitoring," in IEEE Biomed. Circuits Syst. Conf. (BioCAS), 2021, pp. 1-5.
[102] J. Bae, L. Yan, and H. J. Yoo, "A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Applications," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 928-937, 2011.
[103] Medical Device Radiocommunications Service (MedRadio), FCC. [Online]. Available: https://www.fcc.gov/medical-device-radiocommunications-service-medradio
[104] C. Yan, J. Wu, J. Sun, J. Jin, and C. Hu, "A Low Phase Noise Open Loop Fractional-N Frequency Synthesizer With Injection Locking Digital Phase Modulator," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 67, no. 3, pp. 455-459, 2020.
[105] P. Park, J. Park, H. Park, and S. Cho, "An All-Digital Clock Generator Using a Fractionally Injection-Locked Oscillator in 65nm CMOS," in IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 336-337.
[106] Y. Wang et al., "A 60-GHz 3.0-Gb/s Spectrum Efficient BPOOK Transceiver for Low-Power Short-Range Wireless in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1363-1374, 2019.