簡易檢索 / 詳目顯示

研究生: 謝同進
Hsieh, Tung-Chin
論文名稱: 60/40銲錫內涵時間循環黏塑性理論
Theory of Endochronic Cyclic Viscoplasticity of 60/40 Solder Material
指導教授: 李超飛
Lee, C. F.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 72
中文關鍵詞: 黏塑性內涵時間
外文關鍵詞: 60Sn/40Pb, Endochronic, Viscoplasticity
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文依Valanis之內涵時間黏塑性理論、Lee之「決定『內涵時間塑性理論』中材料函數之一有系統方法」以及60Sn/40Pb銲錫其循環應力-應變實驗曲線,決定60Sn/40Pb銲錫內涵時間循環黏塑性本構模式,並將溫度與應變率對材料行為之影響整合在本構模式的材料參數與材料函數中,使本模式能夠進行在變動負荷及溫度條件下材料應力-應變反應之計算。

    為驗證本模式之能力,本文選擇Sasaki等人之實驗為對象,分別對60Sn/40Pb銲錫在(1)定應變振幅之循環單軸負荷實驗、(2) 拉伸快/壓縮慢之定應變振幅循環負荷實驗、(3) 慢-快-慢之定應變振幅循環負荷實驗、(4) 拉伸應力保持之循環應變實驗下的材料行為進行模擬,由(1)、(2)及(3)之結果證明本模式對60Sn/40Pb銲錫循環應力-應變整體行為具有理想的描述能力,並對循環塑性應變範圍與應力範圍之值有準確的預估。對(4)而言,本文結合內涵時間黏塑性理論與Valanis及Lee之潛變動力學進行模擬,證實在合適的材料參數下此法可獲致良好的模擬結果,未來更能配合應變範圍分割法之應用預測60Sn/40Pb銲錫的疲勞壽命。

    On the basis of theory of Endochronic cyclic viscoplasticity and “A systematic Method of Determining Material Function in the Endochronic Plasticity” proposed by Lee, this thesis provides a Endochronic cyclic viscoplastic constitutive model for 60Sn/40Pb solder material. All material parameters and the material function are determined from the cyclic stress-strain curve of 60Sn/40Pb solder material. By incorporating the temperature effect and rate effect into material parameters and the material function, this model can account for the cyclic stress-strain response of 60Sn/40Pb solder material under thermal cycle test.

    The applicability of this constitutive model is evaluated with the simulations of material tests conducted by Sasaki et al., includes (1)Uniaxially constant strain amplitude cyclic test, (2)Fast in tension/Slow in compression constant strain amplitude cyclic test, (3)Slow-fast-slow constant strain amplitude cyclic test, (4)Cyclic strain with tensile hold time test. Simulations based on this constitutive model have a good agreement with (1), (2) and (3), proofs that it can describe the cyclic stress-strain behavior of 60Sn/40Pb solder very well. To Simulate (4), this thesis provides a method which integrates theory of Endochronic cyclic viscoplasticity with creep deformation kinetics proposed by Valanis and Lee, and shows it can account for the response of material well with suitable material parameters. In the future, it could be a great aid to the application of Strain Range Partitioning method(SRP) in predicting the fatigue life of 60Sn/40Pb solder material.

    摘要..........I 誌謝..........II 目錄..........III 表目錄........V 圖目錄........VI 符號說明......VIII 第一章 前言.......................................1 1-1 研究動機與目的..............................1 1-2 文獻回顧..................................2 第二章 內涵時間黏塑性理論..........................5 2-1 內涵時間黏塑性模式.........................5 2-2 張-扭空間中內涵時間黏塑性本構模式及其穩態材料反應之計算......7 第三章 60Sn/40Pb銲錫內涵時間黏塑性理論................10 3-1 在定溫下60Sn/40Pb銲錫材料參數之決定............10 3-1-1 決定材料參數afa......................11 3-1-2 決定材料參數K及tho0.........................12 3-2 60Sn/40Pb銲錫材料參數與溫度之關係.................13 3-2-1 afa與溫度之關係..........................13 3-2-2 K與溫度之關係..............................15 3-2-3 tho0與溫度之關係.........................15 3-3 循環穩態下60Sn/40Pb銲錫材料函數之決定............17 3-4 60Sn/40Pb銲錫材料函數與溫度之關係.................18 第四章 實驗模擬與討論...............................20 4-1 定應變振幅之循環單軸負荷實驗................21 4-2 拉伸快/壓縮慢之定應變振幅循環負荷實驗...........24 4-3 慢-快-慢之定應變振幅循環負荷實驗...............26 4-4 拉伸應力保持之循環應變實驗.....................30 第五章 結論.........................................36 附表...............................................38 附圖.................................................40 參考文獻......................................71

    [1]Valanis, K. C.,“A Theory of Viscoplasticity Without a Yield Surface, PartⅠ. General Theory”, Archives Mechanics, pp. 517-533, 1971.

    [2]Valanis, K. C., “Fundamental Consequences of a New Intrinsic Time Measure Plasticity as a Limit of the Endochronic Theory”, Arch Mechanics, pp. 171-191, 1980.

    [3]Lee, C. F., “A Systematic Method of Determining Material Function in the Endochronic Plasticity”, J. of the Chinese Society of Mech. Eng., Vol.8, No.6, pp. 419-430, 1987.

    [4]私人通訊資料。郭嘉龍,半導體封裝工程,全華科技圖書股份有限公司,第10-8頁,1999。

    [5]Darveaux, R., and Banerji, K., “Constitutive Relations for Tin-Based Solder Joints”, IEEE Transactions on Components, Hybrid, and Manufacturing Technology, Vol.15 No.6, December 1992.

    [6]Katsuhiko Sasaki, Ken-ichi Ohguchi, Hiromasa Ishikawa, “Viscoplastic Deformation of 40Pb/60Sn Solder Alloys─ Experiments and Constitutive Modeling”, ASME J. of Electronic Packaging, Vol.123, pp.379-387, 2001.

    [7]張明凱,變形動力學之銲錫材料的穩態潛變行為,碩士論文-國立成功大學工程科學系,2001。

    [8]S. S. Manson, G. R. Halford, A. C. Nachtigall, “Separation of The Strain Components for Use in Strain Range Partitioning”, Advances in Design for
    Elevated Temperature Environment ed. S. Y. Zamrik, R. I. Jetter, ASME, pp.17-28, 1975.

    [9]Busso, E. P., M. Kitano, T. Kumazawa, “A Visco-Plastic Constitute Model for 60/40 Tin-Lead Solder Used in IC Package Joints”, ASME Journal of Engineering Materials and Technology, Vol.114, pp.331~337, 1992.

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE