| 研究生: |
楊永欽 Yang, Yung-Chin |
|---|---|
| 論文名稱: |
殘留應力對電漿熔射氫氧基磷灰石塗層與鈦鋁釩合金基材間結合強度之影響研究 Influence of residual stress on bonding strength of plasma-sprayed hydroxyapatite coatings on Ti6Al4V substrate |
| 指導教授: |
張煥修
Chang, Edward |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 殘留應力 、電漿熔射 、氫氧基磷灰石 |
| 外文關鍵詞: | plasma spray, hydroxyapatite, residual stress |
| 相關次數: | 點閱:125 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氧基磷灰石(HA)經電漿熔射的方式披覆於骨科及齒科植入物的表面,使這些植入物具有生物活性的表面層,此表面層HA具有引導骨組織生長及骨聚集的能力。然而,對於利用電漿熔射披覆HA塗層於鈦合金基材上來說,HA塗層中的殘留應力對於人工植入物的耐久性可能是一個很重要的影響因素,不過此因素在過去的研究經常被忽略。本研究的目的是要量測電漿熔射HA塗層的殘留應力、楊氏係數以及塗層的機械性質,並探討殘留應力對於塗層機械性質的影響。
在第一部份的研究當中,利用XRD sin2y 的方法量測電漿熔射HA塗層其平面殘留應力的狀態。研究中,利用三點彎曲試驗直接量測從鈦合金基材上取下的HA薄塗層其實際的楊氏係數值。此外,將探討塗層厚度、基材溫度及噴塗冷卻效果等變數對塗層殘留應力值的影響,亦將探討殘留應力對於HA塗層與基材結合強度的影響。結果顯示,HA塗層的楊氏係數值(2.91~16.2 GPa)遠低於HA燒結體的理論值(110 GPa)。使用高熔射功率或低送粉速率噴塗的HA塗層,由於粉末熔融情況好,塗層結構緻密,所以楊氏係數值高。在HA塗層殘留應力的結果方面,厚度200 mm的HA塗層其壓縮殘留應力值大於50 mm厚度的塗層。此外,HA塗層表面殘留應力的兩個主應力方向大致平行及垂直於噴塗方向,顯示塗層殘留應力的分佈主要是相關於噴塗時的噴塗方向。HA塗層將隨著噴塗過程中基材溫度過高或是噴塗過程的冷卻效果不佳而產生較大的壓縮殘留應力。塗層中的壓縮殘留應力會抵銷或降低HA塗層與鈦合金基材之間的界面附著力,而界面上不高的鍵結力量將使得破裂更容易沿著界面發生,導致整體HA塗層結合強度的降低。
在第二部份的研究當中,主要是要探討噴塗模式(使用固定式夾具與旋轉式夾具)及噴塗表面速度對於塗層結構和HA塗層機械性質的影響。實驗上,塗層殘留應力的量測將使用X光繞射的方法,使用標準拉伸測試方法量測塗層與基材結合強度,測試後的塗層破斷面將進行分析。而統計分析的方法將用來對諸多數據進行歸納與分析。結果顯示,噴塗過程中,噴塗表面速度越快,每噴塗一趟所堆積的塗層厚度越薄,熱焓量較少所以冷卻較快試片溫度低,同時殘留應力也越小。在使用固定式夾具噴塗時,所使用的Z字型噴塗路徑對於塗層的堆積較不平均,所以塗層結構較不均勻,相對的,使用旋轉式夾具其交錯式的噴塗路徑則可以使塗層結構較均勻。塗層與基材結合強度的影響因素主要是塗層中的孔洞含量以及壓縮殘留應力。壓縮殘留應力主要是降低塗層與基材的界面附著強度,而HA塗層的孔隙率偏高加上孔洞分佈不均勻則使得塗層內聚強度不足,因此使得破壞除了從界面發生外,更容易沿著塗層內部發生,所以HA塗層結合強度因而降低。
第三部分研究的目的是希望去釐清塗層殘留應力及楊氏係數是否會受到HA塗層經模擬體液浸泡後因塗層結構劣化而有所影響。結果顯示,HA塗層經過四星期模擬體液浸泡後,楊氏係數值下降了大約35%、孔隙率從5.7%增加到8.9%、結晶度提高從28.9%提高到48%,楊氏係數值很明顯的隨著HA塗層孔洞含量的增加而降低。而塗層孔隙率增加的速率隨著浸泡時間越長而減緩,這是因為隨著浸泡時間持續,HA塗層的結晶度逐漸提高,所以使得HA塗層的溶解速率變慢。HA塗層的壓縮殘留應力及應變在經過一個多星期模擬體液浸泡後,均大幅度的下降,這主要是因HA塗層中孔洞含量的急遽增加而引起應變鬆弛所造成。此外,浸泡過程中,HA塗層中增加的孔洞很明顯的降低了塗層的內聚強度導致HA塗層的劣化,使得HA塗層與基材的結合強度降低。模擬體液浸泡前後,HA塗層中的殘留應變,均比實際應用上股骨莖表面所承受的應變要大,因此殘留應變的存在對於人工植入物的固定效果是不利的。
在第四部份的實驗當中,為了能夠精確的得到HA塗層內部整體的平均殘留應力值及應力狀態,所以使用應力鬆弛法取代X光繞射法來量測HA塗層的殘留應力。結果顯示,使用應力鬆弛法可以量測到沿著塗層厚度不同位置的殘留應力值,位於塗層與基材界面的壓縮殘留應力最大,HA塗層表面最小,這個結果證明了壓縮殘留應力的主要影響是在HA塗層與基材界面上,使得HA塗層破壞路徑易於沿著界面而發生。經移除鈦合金基材後,取下的HA塗層其塗層長度變長以及塗層曲率變化,可以來證明在本論文一系列的研究系統中,電漿熔射HA塗層噴塗完成後的確是受到壓縮殘留應力的作用。
Revealing an excellent combination of biocompatibility and mechanical properties, plasma-sprayed bioactive hydroxyapatite (HA)-coated titanium alloy implants have raised much interest. One of the major factors hypothesized to cause the failure of the implants in the body fluid environment mechanically and physiologically was the residual stress, but no evidence was provided. The aim of this study was to evaluate the residual stress and the Young’s modulus of plasma sprayed HACs. Moreover, the influences of residual stress on mechanical properties of HA coating.
In phase I, biaxial residual stress states of plasma-sprayed HACs were studied by XRD sin2y method. The Young's modulus of HA was measured from the separated free coating by three point bending test method. Otherwise, eight HACs were plasma sprayed on Ti-6Al-4V substrates by varying the coating thickness, substrate temperatures and the cooling conditions. It was found that the directions of principal stresses were in proximity to and perpendicular to the spraying direction. The measured Young's moduli of HACs were much lower than the theoretical value reported. The denser coatings could be effected by higher plasma power and lower powder feed rate. Significantly, the thicker 200 mm-HA coating exhibited higher residual stress than that of thinner 50 mm-HA coating. The result clearly established the relationships between residual stress, fracture behaviour and bonding strength for the plasma-sprayed HA coatings on Ti-6Al-4V substrate.
In phase II, HACs were plasma sprayed on the titanium to explore the effect of processing (the coatings either using a fixed-holder (A-HACs) or rotational-holder (B-HACs)) and structural characteristics of the coatings on the mechanical states of the system. Statistics was employed for analyzing the data obtained from the experiment. It was found that A-HACs exhibit non-uniform porosity distribution, as well as a higher residual stress. With insignificant variation of porosity in A-HACs or B-HACs themselves, the fracture mode and the bonding strength of either group of coatings were found dominantly correlated with the change of residual stress which affects the adhesive bonding between HACs and substrate. The large difference of fracture behavior and bonding strength between B-HACs and A-HACs shouldn’t only be attributed to the difference in porosity content. The non-uniformity in porosity distribution in A-HACs is rationalized to play a major role which significantly lowers the bonding strength through dominantly degrading the cohesive strength of the coatings.
In phase III, this study evaluated the Young’s modulus, residual stress and strain and bonding strength of the plasma-sprayed HACs on Ti6Al4V substrate with and without the immersion in simulated body fluid (SBF). The purpose was to explore the possible correlation of HAC durability and mechanical properties of the coating. The results show that the residual stress and strain, Young’s modulus, and bonding strength after immersion in SBF are substantially decreased. The decayed Young’s modulus and mechanical properties of HACs are accounted by the degraded interlamellar or cohesive bonding in the coating, due to the increased porosity after immersion that weakens the bonding strength of coating and substrate system. This study contributes to the arguments that the method to alleviate the dissolution of HAC will increase the bonding strength of the coating system after immersion, which together with the controlled residual stress and strain in the coating, might promote the long-term stability of the HA-coated implant.
In phase IV, in order to obtain the whole and accurate residual stress value and state, the residual stress were measured by using the material removal method instead of the XRD sin2y method. The results show that the residual stress at the top surface, neutral surface, and HA-coating/Ti-substrate interface of the HA coating on the Ti-substrate was calculated as –44.0, –52.7 and –61.3 MPa, respectively. In addition, the gauge length change as well as the observed curvature in the free HA coating should serves to suggest that the plasma-sprayed HA coating on Ti-6Al-4V substrate in this experiment is under the residual compressive stress state.
[1] R. G. T. Geesink, K. de Groot, and C. P. A. T. Klein, "Chemical implant fixation using hydroxy-apatite coatings", Clin. Orthop., 225(1987)147-170.
[2] R. D. Crowninshield, R. A. Brand, and R. C. Johnston, "The effects of walking velocity and age on hip kinematics and kinetics", Clin. Orthop., 132 (1978)271-276.
[3] B. F. Kavanagh, M. A. Dewitz, D. M. Ilstrup, R. N. Stauffer, and M. B. Coventry, "Chamley total hip arthroplasty with cement. Fifteen-year results", J. Bone Joint Surg., 71A(1989)1496-1503.
[4] J. E. Lemons, "Hydroxyapatite Coatings", Clin. Orthop., 235(1988)220-223.
[5] J. F. Kay, "Bioactive surface coating for hard tissue biomaterials", in "CRC Handbook of Bioactive Ceramics", edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. II, pp. 111-122, CRC Press Inc., Boca Raton, Florida, 1990.
[6] K. A. Thomas, J. F. Kay, S. D. Cook, and M. Jarcho, "The effect of surface macrotexture and hydroxyapatite coating on the mechanical strength and histologic profils of titanium implant materials", J. Biomed. Mater. Res., 21(1987)1395-1414.
[7] D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, and H. Stich, "Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs", J. Biomed. Mater. Res., 25(1991) 889-902.
[8] J. A. Jansen, J. P. C. M. van de Waerden, J. G. C. Wolke, and K. de Groot, "Histologic evaluation of the osseous adaptation to titanium and hydroxy-apatite-coated titanium implants", J. Biomed. Mater. Res., 25 (1991)973-989.
[9] K. Soballe, E. S. Hansen, H. B. Rasmussen, C. M. Pedersen, and C. Bunger, "Hydroxyapatite coating enhances fixation of porous coated implants", Acta Orthop. Scand., 61[4](1990)299-306.
[10] S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, "Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system", Clin. Orthop., 230(1988)303-312.
[11] R. Garcia, and R. H. Doremus, "Electron microscopy of the bone-hydroxy-apatite interface from a human dental implant", J. Mater. Sci.: Mater. in Med., 3(1992)154-161.
[12] R. G. T. Geesink, K. de Groot, and C. P. A. T. Klein, "Bonding of bone to apatite-coated implants", J. Bone Joint Surg., 70B(1988)17-22.
[13] 王寶琪, "電漿熔射氫氧基磷灰石披覆於鈦鋁釩合金基材生醫塗層之塗層特性與生物反應研究" , 國立成功大學材料科學及工程研究所博士論文 , 1994
[14] W. D. Schulz, Metalloberflache, 47[2](1993) 86.
[15] S. R. Brown, I. G. Turner, H. Reiter, Residual stress measurement in thermal sprayed hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 5(1994)756-759.
[16] P. Millet, E. Girardin, C. Braham, A. Lodini, Stress influence on interface in plasma-sprayed hydrozyapatite coatings on titanium alloy. J. Biomed. Mat. Res. 60(2002)679-684.
[17] V. Sergo, O. Sbaizero, R. David, Clarke. , Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings. Biomaterials 18(1997)477-482.
[18] Y. C. Tsui, C. Doyle, T. W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates Part1: Mechanical properties and residual stress levels. Biomaterials 19(1998)2015-2029.
[19] Y. Han, K. Xu, J. Lu, Dissolution response of hydroxyapatite coatings to residual stress. J. Bio. Mat. Res. 26 (2001)596-602.
[20] B. D. Cullity, Elements of x-ray diffraction: 2nd Ed. Reading pp. 447, 478, MA: Addison-Wesley; (1980).
[21] 吳泰伯, 許樹恩. "X光繞射原理與材料結構分析" , pp. 385~405.
[22] A. G. Evans, G. B. Crumley, R. E. Demaray, On the mechanical behavior of brittle coatings and layers. Oxidation of Metals 20(1983)196-216.
[23] R. Mevrel, Cyclic oxidation of high-temperature alloys. Mater. Sci. Technol. 3(1987)531-535.
[24] S. R. Goldring, A. L. Schiller, M. Roelke, and W. H. Harris, "The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis", J. Bone Joint Surg., 65A(1983)575-579.
[25] R. Huiskes, "The various stress patterns of press-fit, ingrowth, and cemented femoral stems", Clin. Orthop., 261(1990)27-38.
[26] H. J. Agins, N. W. Alcock, M. Bansal, E. A. Salvati, P. D. Jr. Wilson, P. M. Pellicci, and P. G. Bullough, "Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis", J. Bone Joint Surg., 70A(1988)347-356.
[27] J. Black, H. Sherk, J. Bonini, W. R. Rostoker, F. Schajowicz, and J. O. Galante, "Metallosis associated with a stable titanium-alloy femoral component in total hip replacement. A case report", J. Bone Joint Surg.,72A(1990)126-130.
[28] J. D. Witt, and M. Swann, "Metal wear and tissue response in failed titanium alloy total hip arthroplasty", J. Bone Joint Surg., 73B(1991)559-563.
[29] E. J. Evans, "Toxicity of hydroxyapatite in vitro: the effect of particle size". Biomaterials, 12(1991)574-576.
[30] A. Ravaglioli, and A. Krajewski, "Bioceramics: Materials, Properties, Applications", pp. 44-45, Chapman & Hall Press, London, (1992).
[31] M. Jarcho, "Calcium phosphate ceramics as hard tissue prosthetics", Clin. Orthop., 157(1981)259-278.
[32] L. L. Hench, "Bioceramics: from concept to Clinic", J. Am. Ceram. Soc., 74(1991)1487-1510.
[33] J. D. Bobyn, R. M. Pilliar, H. U. Cameron, and G. C. Weatherly, "The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone", Clin. Orthop., 150(1980)263-270.
[34] S. D. Cook, K. A. Walsh, and R. J. Haddad, "Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants", Clin. Orthop., 193(1985)271-280.
[35] P.-I. Branemark, B. O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, and A. Ohman, "Osseointegrated implants in the treatment of the endentulous jaw", Scand. J. Plast. Reconstruc. Surg., 11(1977)Soppl. 16.
[36] T. Albrektsson, P.-I. Branemark, H.-A. Hansson, and J. Lindstrom, "Osseo-integrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man", Acta Orthop. Scand., 52(1981)155-170.
[37] C. Johansson, J. Lausmaa, M. Ask, H-A. Hansson, and T. Albrektsson, "Ultra-structural differences of the interface zone between bone and Ti6A14V or commercially pure titanium", J. Biomed. Eng., 11(1989)3-8.
[38] J. W. McCutchen, J. P. Collier, and M. B. Mayer, "Osseointegration of titanium implants in total hip arthroplasty", Clin. Orthop., 261(1990)114-125.
[39] G. L. de Lange, C. de Putter, and F. L. J. A. de Wijs, "Histological and ultra-structural appearance of the hydroxyapatite-bone interface", J. Biomed. Mater. Res., 24(1990)829-845.
[40] H. A. Hoogendoom, W. Renooij, L. M. A. Akkermans, W. Visser, and P. Wittebol, "Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora", Clin. Orthop., 187(1983)281-288.
[41] C. A. van Blitterswijk, S. C. Hesseling, J. J. Grote, H. K. Koerten, and K. de Groot, "The biocompatibility of hydroxyapatite ceramic: A study of retrieved human middle ear implants", J. Biomed. Mater. Res., 24(1990)433-453.
[42] K. de Groot, C. P. A. T. Klein, J. G. C. Wolke, and J. M. A. de Blieck-Hoger-vorst, "Chemistry of calcium phosphate bioceramics", in "CRC Handbook of Bioactive Ceramics", edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. II, pp. 3-16, CRC Press Inc., Boca Raton, Florida, (1990).
[43] F. Barbon, B. Locardi, M. Verita, G. Gabbi, C. Grispibni, P. T. Leali, E. B. del Prever, P. Gallinaro, G. Gerulli, G. L. del Bue, G. Lualdi, E. V. Finzi, P. Giusti, and F. Marotti, "Biocompatibility and osteogenetic characteristics of new biocompatible glasses". Biomaterials, 12(1991)565-568.
[44] T. Kitsugi, T. Yamamuro, and T. Kokubo, "Analysis of A-W glass-ceramic surface by micro-beam x-ray diffraction", J. Biomed. Mater. Res., 24(1990)259-273.
[45] L. L. Hench, "Bioactive glasses and glass-ceramics: A perspective", in "CRC Handbook of Bioactive Ceramics", edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. I, pp. 7-23, CRC Press Inc., Boca Raton, Florida, (1990).
[46] S. Yoshii, Y. Kakutani, T. Yamrmuro, T. Nakamura, T. Kitsugi, M. Oka, T. Kokubo, and M. Takagi, "Strength of bonding between A-W glass-ceramic and the surface of bone cortex", J. Biomed. Mater. Res. 22(1988)327-338.
[47] T. Kitsugi, T. Yamamuro, H. Takeuchi, and M. Ono, "Bonding behavior of three types of hydroxyapatite with different sintering temperatures implanted in bone", Clin. Orthop., 234(1988)280-290.
[48] R. E. Holmes, R. W. Bucholz, and V. Mooney, "Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects", J. Bone Joint Surg., 68A(1986) 904-911.
[49] R. W. Bucholz, A. Cariton, and R. Holmes, "Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures", Clin. Orthop., 240(1989)53-62.
[50] T. Kokubo, "Bioactive glass ceramics: properties and applications", Biomaterials, 12(1991)155-163.
[51] S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, and T. Yamamuro, "Bone bonding mechanism of p -tricalcium phosphate", J. Biomed. Mater. Res., 25 (1991)1303-1315.
[52] M. Neo, S. Kotani, Y. Fujita, T. Nakamura, and T. Yamamuro, "Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy", J. Biomed. Mater. Res., 26(1992)255-267.
[53] E. A. Salvati, "A ten year follow-up of our first one-hundred consecutive Chamley total hip replacements", J. Bone Joint Surg., 63A(1981)753-759.
[54] R. D. Beckenbaugh, and D. M. Ilstrup, "Total hip arthroplasty: A review of three hundred and thirty-three cases with long-term follow-up", J. Bone Joint Surg., 60A(1978)306-313..
[55] J. J. Callaghan, "Current concepts review: The clinical results and basic science of total hip arthroplasty with porous-coated prostheses", J. Bone Joint Surg., 75A(1993)299-310.
[56] C. A. Engh, J. D. Bobyn, and A. H. Glassman, "Porous-coated hip replacement", J. Bone Joint Surg., 69B(1987)45-55.
[57] S. D. Cook, F. S. Georgette, H. B. Skinner, and R. J. Jr. Haddad, "Fatigue properties of carbon- and porous-coated Ti-6AI-4V alloy", J. Biomed. Mater. Res., 18(1984)487-512.
[58] D. H. Kohn, and P. Ducheyne, "A parametric study of the factors affecting the fatigue strength of porous coated Ti-6AI-4V implant alloy", J. Biomed. Mater. Res., 24(1990)1483-1501.
[59] F. W. Jr. Sunderman, S. M. Hopfer, T. Swift, W. N. Rezuke, L. Ziebka, P. Highman, B. Edwards, M. Folcik, and H. R. Gossling, "Cobalt, chromium, and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses", J. Orthop. Res., 7(1989)307-315.
[60] S. F. Hulbert, "Bioactive ceramic-bone interface", in "CRC Handbook of Bioactive Ceramics", edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. I, pp. 3-6, CRC Press Inc., Boca Raton, Florida, (1990).
[61] P. Ducheyne, and K. E. Healy, "The effect of plasma-sprayed calcium phos-phate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys", J. Biomed. Bater. Res., 22(1988)1137-1163.
[62] M. K. Hobbs, H. Reiter, "Residual stresses in ZrO2-8%Y2O3 plasma-sprayed thermal barrier coatings" Surf. Coat. Techno. 34[1] (1988)33-42.
[63] S. C. Gill, T. W. Clyne, "Investigation of residual stress generation during thermal spraying by continuous curvature measurement" Thin Solid Films , 250(1994)172-180
[64] A. Noutomi, M. Kodama, "Residual stress measurement on plasma sprayed coatings" Welding International , No.11, pp. 947-953.
[65] D. W. Jordan, K. T. Faber, "X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling", Thin Solid Films, 235(1993) 137-14
[66] B. C. Wang, E. Chang, C. Y. Yang, D. Tu, C. H. Tsai, "Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coating", Surface and Coatings Technology 58(1993)107-111.
[67] B. C. Wang, T. M. Lee, E. Chang, C. Y. Yang, "The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating to bone: The effect of coating thickness", J. Biomed. Mater. Res. 27 (1993)1315-1327.
[68] B. C. Wang, E. Chang, C. Y. Yang, "Characterization of plasma-sprayed bioactive hydroxyapatite coatings in vitro and in vivo", Materials Chemistry and Physics 37 (1994)55-63.
[69] S. Tadano, M. Todoh, J. Shibano, T. Ukai, SME International journal, series A: Mechanics and material engineering 40 (1997)328.
[70] F. C. M. Driessens, "Formation and stability of calcium phosphates in relation to the phase composition of the mineral in calcified tissue", in "Bioceramic of Calcium Phosphate", edited by K. de Groot, pp. 1-32, CRC Press, Inc., BocaRaton, Florida, (1983).
[71] M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, and R. H Doremus, "Hydroxyapatite synthesis and characterization in dense polycrystalline form", J. Mater. Sci., 11(1976)2027-2035.
[72] T. Kijima, and M. Tsutsumi, "Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite", J. Am. Cera. Soc., 62(1979)455-460.
[73] G. de With, H. J. A. Vandijk, N. Hattu, and K. Prijs, "Preparation, micro-structure and mechanical properties of dense polycrystalline hydroxyapatite", J. Mater. Sci., 16(1981)1592-1598.
[74] J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. de Groot, "High temperature characteristics of synthetic hydroxyapatite", J. Mater. Sci.: Mater. Med., 4(1993)83-85.
[75] G. Bauer, "Biochemical aspects ofosseo-integration", in "CRC Handbook of Bioactive Ceramics", edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. I, pp. 81-97, CRC Press Inc., BocaRaton, Florida, (1990).
[76] American Ceramic Society, "Phase Diagrams for Ceramists", Vol. 5, pp. 321-322, American Ceramic Society, Washington DC, (1983).
[77] H. Newesely , " High temperature behavior of hydroxy- and fluorapatite" J. Oral Rehab. 4(1977)97.
[78] I. Key, R. A. Young, and A. S. Posner, Nature, 210(1964)1050.
[79] American Ceramic Society, "Phase Diagrams for Ceramists", 4th Printing, p. 106, American Ceramic Society, Washington DC, (1979).
[80] A. S. Posner, "The mineral of bone", Clin. Orthop., 200(1985)87-99.
[81] K. Hayashi, K. Uenoyama, N. Matsuguchi, and Y. Sugioka, "Quantitative analysis of in vivo tissue responses to titanium-oxide- and hydroxyapatite-coated titanium alloy", J. Biomed. Mater. Res., 25(1991)515-523.
[82] H. S. Ingham, and A. P. Shepard, "Plasma Flame Process", pp. 11, METCO Inc., Westburg, Long Island, New York, USA, (1965).
[83] F. N. Longo, et al. , " Second national conference on thermal spray " , pub. by American Society for Metals , USA , pp. 1 , (1984).
[84] J. H. Clare, et al. , " Metal Handbook" , Ninth Edition , pub. by American Society for Metals , USA , pp. 361 , (1982).
[85] " Plasma spraying of metallic and ceramic materials", edited by D. Matejka and B. Benko, John Wiley and Sons Ltd. , UK. , pp. 15.
[86] T. W. Clyne, S. C. Gill, Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J. Thermal Spray Technol. 5[4] (1996)401-418.
[87] O. Kesler, M. Finot, S. Suresh, S. Sampath, Determination of processing-induced stresses and properties of layered and graded coatings: experimental method and results for plasma-sprayed Ni-Al2O3. Acta Mater. 45[8](1997) 3123.
[88] J. A. Sue, X-ray elastic constants and residual stress of textured titanium nitride coating. Surf. Coat. Techno. 54/55(1992)154-159.
[89] A. J. Perry, S. J. Albert, P. J. Martin, Practical measurement of the residual stress in coatings. Surf. Coat. Techno. 81[1] (1996)17-28.
[90] S. Kuroda, T. Kukushima, S. Kitahara, Simultaneous measurement of coating thickness and deposition stress during thermal spraying, Thin solid films, 164(1988)157-163.
[91] S. C. Gill, T. W. Clyne, Investigation of residual stress generation during thermal spraying by continuous curvature measurement. Thin Solid Films 250 (1994)172-180.
[92] U. Selvadurai, Reimers, Characterization of phase composition and residual stress state in plasma sprayed ceramic coatings. High Performance Ceramic Films and Coatings. P. Vincenzini (Editor). Elsevier Science Publishers B. V., (1991).
[93] G. Bauer, Biochemical aspects of osseo-intergation, in CRC Handbook of Bioactive Ceramic. Ed by T. Yamamuro, L. L. Hench, J. Wilson, Vol. I, CRC Press Inc., Boca Raton, pp. 81-97, Florida, (1990).
[94] R. L. Coble, W. D. Kingery, J. Am. Ceram. Soc., 39[11] (1956)377.
[95] F. P. Knudson, J. Am. Ceram. Soc., 42[8](1959)376.
[96] R. C. Rossi, J. Am. Ceram. Soc., 51[8](1968)433.
[97] E. A. Dean, J. Am. Ceram. Soc., 66[12](1983)849.
[98] D. Ashkin, R. A. Haber, J. B. Wachtman, J. Am. Ceram. Soc., 73[11] (1990)3376.
[99] N. Ramakrishman, V. S. Arunachalam, J. Mater. Sci., 25 (1990)3930.
[100] F. Kroupa and J. Dubsky, Pressure dependence of Young’s modulus of thermal sprayed materials, Scripta Materialia, 40[11](1999)1249-1254.
[101] S. H. Leigh, C. C. Berndt, Modeling of elastic constants of plasma sprayed deposits with ellipsoid-shaped voids, Acta Mater. 47[5](1999)1575-1586.
[102] A. Tronche, P. Fauchais, Mater. Sci. Eng., 92 (1987)133.
[103] H. E. Eaton, R. C. Novak, Surf. Coat. Technol., 27 (1986)257.
[104] C. Li, A. Ohmori, R. McPherson, J. Mat. Sci., 32 (1997)997.
[105] K. S. Shi, Z. Y. Qian, M. S. Zhuang, J. Am. Ceram. Soc. 71(1988)924.
[106] J. L. Katz, R. A. Harper, Calcium phosphate and apatites. In Concise Encyclopaedia of Medical and Dental Materials, ed. D. Williams. Pergamon Press pp. 87-95, New York, (1990).
[107] H. Rao, W. A. Thompson, J. L. Katz, R. A. Harper, Elastic constants of the composite system hydroxyapatite-dicalcium phosphate dihydrate. J. Dent. Res. 55(1976)708.
[108] M. Akao, H. Aoki, K. Kato, Mechanical properties of sintered hydroxyapatite for prosthetic application. J. Mat. Sci. 16[3](1981)809-812.
[109] H. Li, L. Z. Sun, J. B. Li, Z. G. Wang, X-ray stress measurement and FEM analysis of residual stress distribution near interface in bonded ceramic/metal compounds. Scripta Materialia 34[9](1996)1503-1508.
[110] J. D. Lee, H. Y. Ra, K. T. Hong, S. K. Hur, Analysis of deposition phenomena and residual stress in plasma spray coatings. Surface and Coatings Technology 56 (1992)27-37.
[111] D. L. Ruckle, Plasma-sprayed ceramic thermal barrier coatings for turbine vane platforms. Thin Solid Films 73 (1980)455-461.
[112] J. W. Watson, S. R. Levine, Thin solid films 119 (1984) 185.
[113] M. J. Filiaggi, N. A. Coombs, R. M. Pilliar, J. Biomed. Mater. Res. 25 (1991) 1211.
[114] E. Munting, M. Verhelpen, F. Li, A. Vincent, CRC Handbook of Bioactive Ceramics. pp. 143-148 (1990).
[115] C. H. Quek, K. A. Khor, P. Cheang, J. Mat. Proces. Tech. 89-90 (1999) 550.
[116] W. D. Schulz, Metalloberflache 47[2](1993) 86.
[117] C. Y. Yang, B. C. Wang, E. Chang, J. D. Wu, J. Mat. Sci. Mater. Med. 6 (1995) 249.
[118] S. R. Radin, P. Ducheyne, J. Mat. Sci. Mater. Med. 3 (1992) 33.
[119] J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Regression Models, 3rd Ed., (Irwin, Chicago, 1996).
[120] J. M. Spivak, J. L. Ricci, N. C. Blumenthal, H. Alexander, A new canine model to evaluate the biological response of intramedullary bone to implant materials and surfaces. J. Biomed. Mater. Res. 24(1990)1121-1149.
[121] C. Y. Yang, B. C. Wang, E. Chang, B. C. Wu, Bond degradation at the plasma-sprayed HA coating/Ti-6Al-4V alloy interface: an in vitro study. J. Mat. Sci.: Mat. Med. 6(1995)258-265.
[122] R. LeGeros, R. G. Graig, Strategies to affect bone remodeling: Osseointegration. J. Biomed. Mater. Res. 8(1993)583-596.
[123] K. Hayashi, T. Mashima, K. Uenoyama, The effect of hydroxyapatite coating on bony ingrowth into grooved titanium implants. Biomaterials 20 (1999)111-119.
[124] T. Inadome, K. Hayashi, Y. Nakashima, H. Tsumura, Y. Sugioka, Comparison of bone-implant interface shear strength of hydroxyapatite-coated and alumina-coated metal implants. J. Biomed. Mater. Res. 29(1995)19-24.
[125] W. Thomas, C. T. Rudolph, Z. Richard, T. James, Hydroxyapatite-coated femoral stems. The J. Bone Joint Surgery (American volume) 73[A] (1991)1493-1452.
[126] W. P. Hu, K. A. Lai, C. H. Lin, C. Y. Yang, G. L. Chang, Retrieval study on hydroxyapatite-coated acetabular cups. Bioengineering, Proceedings of the Northeast Conference IEEE 28th Annual Northeast Bioengineering Conference Apr. 20-21 (2002).
[127] T. Otani, L. A. Whiteside, S. E. White, Strain distribution in the proximal femur with flexible composite metallic femoral components under axial and torsional loads. J. Biomed. Mater. Res. 27(1993)575-585.
[128] S. Paolo, L. Matteo, B. Luca, Residual stresses in plasma sprayed partially stabilised zirconia TBCs: influence of the deposition temperature. Thin Solid Films 278 (1996)96-103.
[129] T. Kokubo, CRC handbook of bioactive ceramics, vol. 1. Edited by T. Yamamuro, L. L. Hench, J. Wilson (CRC Press, Florida 1990) pp. 41.
[130] W. F. Riley, L. D. Sturges, D. H. Morris, Mechanics of Materials, 5th ed., John Wiley & Sons, Inc., New York, (1999).
[131] K. de Groot, Klein CPAT, Wolke JGC, De Blieck-Hoger-vorst JMA. Plasma-sprayed coatings of calcium phosphate, in CRC Handbook of Bioactive Ceramics, edited by T. Yamamuro, L. L. Hench, J. Wilson, Vol. II, pp. 133-142, CRC Press Inc., Boca Raton, Florida, (1990).
[132] Van Blitterswijk CA, Bovell YP, Flach JS, Leenders H, Van den Brink I, De Bruijn J. Variations in hydroxyapatite crystallinity: effect on interface reactions, in Hydroxyapatite Coatings in Orthopaedic Surgery, edited by Geesink RGT, pp. 33-47, Raven Press, New York, (1993).
[133] G. W. Hastings, D. Daily, S. Morrey, in Proceedings of 1st International Bioceramic Symposium, Kyoto, “Bioceramics”, edited by H. Oonishi, H. Aoki, K. Sawai, p. 355. Japan, April 26, (1988).
[134] D. H. Harris, Overview of problem surrounding the plasma spraying of hydroxyapatite coatings, pp. 419-423 of Thermal spray research and applications, edited by T. F. Benecki, ASM International Cleveland, Ohio, (1990).
[135] J. Mencik, Mechanics of Components with Treated or Coated Surfaces. Kluwer Academic Publishers, The Netherlands, 1996.