| 研究生: |
韓瑋珊 Han, Wei-Shan |
|---|---|
| 論文名稱: |
排除燃料電池凝結水過程中之水滴動態研究 Dynamic Behavior of Liquid Droplets in Removal Process of Water Condensate in Flow Channels of a Fuel Cell |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 質子交換膜燃料電池 、水管理 、兩相流模型 |
| 外文關鍵詞: | PEM fuel cell, Water management, Two-phase model |
| 相關次數: | 點閱:133 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在PEM燃料電池中,水管理一直是很困難的部分,特別是在一些孔質材料或是流道中,進入流道氣體中水蒸氣的分壓大於水的飽和蒸氣壓,或是電池的超做溫度低於水的沸點溫度,都會造成液態水在流道中形成。本研究以數值方模擬在流道中的移動性,並以商業軟體CFD-ACE+加以模擬,使用VOF模型追蹤水滴運動。另一方面,亦組裝一單蛇道電池模型,進行EIS實驗、IV曲線測試及可視化觀測,以確定凝結水對燃料電池性能的影響,並比較數值與實驗結果中水滴運動情形。
研究中,探討不同進口流速對水滴運動之影響,並考慮不同流道表面性質(如接觸角等),對水滴運動所造成影響之探討。本研究在不同的電池操作條件下廣泛的討論液態水跟氣體在流道中的傳遞現象。以速度為2 m/s、重力方向為負Y方向和接觸角為70°為基本的比較範例,改變不同速度、接觸角和重力方向。結果顯示不同空氣速度和接觸角的確會明顯造成改變水滴移動,但重力方向的影響並不大。其中,尤以改變不同的接觸角所造成液態水滴運動型態的改變最為明顯。
Water management in a PEM fuel cell has been a critical challenging issue, especially in the porous electrodes and reactant flow channels. As the partial pressure of water vapor exceeds the saturation pressure of water or the operating temperature of a PEM fuel cell is lower than the dew point of water vapor, liquid water may form to occupy the pore of gas diffusion layer and block the gas transport path. Consequently, the limiting current density is lowered, resulted from the mass-transport-limitation. Therefore, this study presents a numerical investigation of air-water flow in single serpentine channel on the cathode of a PEM fuel cell by using the commercial computational fluid dynamics (CFD-ACE+). The volume of fluid (VOF) model is adopted to trace the shape if the water droplet. The dynamic behavior of the droplet is simulated in flow channel of fuel cell at different reactant flow velocities. In addition, the effect of surface properties of flow channel was examined under various hydrophilic/hydrophobic characteristics, such as the contact angle of droplet. In this study a single-cell PEMFC with a serpentine gas flow channel is made as the model for experiment. The base conditions are : The air velocity is fixed at 2 m/s; the gravity is in negative y direction; the contact angle is 70 degrees. Results show the contact angle is the most important factor for liquid droplet removal.
[1] L. Wang, A. Husar, T. Zhou, H. Liu, “A parametric study of PEM fuel cell performances,” International Journal of Hydrogen Energy 28 (2003) 1263 – 1272.
[2] Z. Qi, A. Kaufman, “Activation of low temperature PEM fuel cells,” Journal of Power Sources 111 (2002) 181–184.
[3] F. Barbir, H. Gorgun, X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,” Journal of Power Sources 141 (2005) 96–101.
[4] H. Li ,Y. Tang, Z. Wang, Z. Shi , S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza, “A review of water flooding issues in the proton exchange membrane fuel cell, ” Journal of Power Sources 178 (2008) 103–117.
[5] X. Li, I. Sabir, J. Park, “A flow channel design procedure for PEM fuel cells with effective water removal, ” Journal of Power Sources 163 (2007) 933–942.
[6] J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-fleld conflguration: influence on the performance of a PEMFC, ” Journal of Power Sources 118 (2003) 172-178.
[7] Z. Qi, A. Kaufman, “Improvement of water management by a microporous sublayer for PEM fuel cells, ” Journal of Power Sources 109 (2002) 38-64.
[8] H.Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells, ” Journal of Power Sources 142 (2005) 117-124.
[9] Klaus Tüber, David Pócza, Christopher Hebling, “Visualization of water buildup in the cathode of a transparent PEM fuel cell, ” Journal of Power Sources 124 (2003) 403–414.
[10] X. G. Yang, F. Y. Zhang, A. L. Lubawy, C. Y. Wang, “Visualization of liquid water transport in a PEFC, ” electrochemical and Solid-State Letters 7 (2004) 408-411.
[11] Ana M. López, F. Barreras, A. Lozano, J. A. García, L.Valino, R. Mustata, “Comparison of water management between two bipolar plate flow-field geometries in proton exchange membrane fuel cells at low-density current range, ” Journal of Power Sources 192 (2009) 94–99.
[12] X. Yu, B. Zhou, A. Sobiesiak, “Water and thermal management for Ballard PEM fuel cell stack, ”Journal of Power Sources 147 (2005) 184–195.
[13] B. Zhou, W. Huang, Y. Zong, A. Sobiesiak, “Water and pressure effects on a single PEM fuel cell, ” Journal of Power Sources 155 (2006) 190–202.
[14] P. Quan , B. Zhou , A. Sobiesiak, Z.S. Liu, “Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode, ” Journal of Power Sources 152 (2005) 131–145.
[15] K. Jiao, B. Zhou, P. Quan, “Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack, ” Journal of Power Sources 154 (2006) 124–137.
[16] K. Jiao, B. Zhou, P. Quan, “Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode, ” Journal of Power Sources 157 (2006) 226–243.
[17] A. Dinh Le, B. Zhou, “A general model of proton exchange membrane fuel cell, ” Journal of Power Sources 182 (2008) 197–222.
[18] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries , ” Journal of Computational Physics 39 (1981) 201-225.
[19] D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, J. I. Hochstein, “Volume tracking of interfaces having surface tension in two and three dimensions, ” AIAA Meeting Papers on Disc, January 1996 A9618812, W-7405-Eng-36, AIAA Paper 96-0859.
[20] A. Theodorakakos, T. Ous, M. Gavaises, J.M. Nouri, N. Nikolopoulos , H. Yanagihara, “Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells, ” Journal of Colloid and Interface Science 300 (2006) 673–687.
[21] A. B. D. Cassie, S. Baxter, “Wettability of porous surfaces,” Farad. Soc., 40 (1944) 546-551
[22] W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202 (1997) 1–8.
[23] 謝健、侯福居、陳諺辰、陳紘珉、楊舜博、鄭劭家、陳學禮,近乎完美且穩定的超疏水結構,國家實驗研究院儀器科技研究中心第 31 卷第 5 期 73–79,民國99年4月。
[24] 單子睿,壓電式噴墨系統之水滴型態控制研究及其數值模擬,國立成功大學材料工程學系碩士論文,台南,民國92年7月。
[25] J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum method for Mmodeling surface tension, ” Journal of Computational Physics 100 (1992) 335-354.
[26] J.R. Macdonald, and W.R. Kenan, Impednce Spectroscopy, Emphasizing Solid Materials and System, Wiley, New York, 1897.
[27] C. H. Cheng, M. H. Chang ,“Predictions of internal temperature distribution of PEMFC by non-destructive inverse method,” Journal of Power Sources 139 (2005) 115-125.
[28] C. H. Cheng, M. H. Chang, “Non-destructive inverse method for determination of irregular internal temperature distribution in PEMFCs,” Journal of Power Sources 142 (2005) 200-210.
[29] H. H. Lin, C. H. Cheng, C. Y. Soong, F. Chen, W. M. Yan, “Optimization of key parameters in the proton exchange membrane fuel cell,” Journal of Power Sources 162 (2006) 246-254.
[30] C. H. Chen, S. P. Jung, S. C. Yen, “Flow distribution in the manifold of PEM fuel cell stack,” Journal of Power Sources 173 (2007) 249-263.
[31] C. H. Chen, M. H. Chang, “A simplified conjugate-gradientmethod for shape identification based on thermal data,” Numerical Heat Transfer, Part B 43 (2003) 1-19
[32] A. Dinh Le, B. Zhou, “Fundamental understanding of liquid water effects on the performance of a PEMFC with serpentine-parallel channels, ” Electrochimica Acta 54 (2009) 2137–2154.
[33] K. Jiao, B. Zhou, “Effects of electrode wettabilities on liquid water behaviours in PEM fuel cell cathode, ” Journal of Power Sources 175 (2008) 106–119.
[34] K. Jiao, B. Zhou, “Innovative gas diffusion layers and their water removal characteristics in PEM fuel cell cathode, ” Journal of Power Sources 169 (2007) 296–314.
[35] 林仕文,在流體體積法中使用高解析離散法計算兩相流,國立交通大學機械工程學系碩士論文,新竹,民國97年7月。
[36] 黃鎮江,燃料電池,全華科技圖書股份有限公司初版一刷,民國92年11月。
[37] J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, second edition, 2003.
[38] 劉儒勛、王志峰,數值模擬方法和運動界面追蹤,中國科學技術大學出版社,2001。
[39] J. P. Doormaal, G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows, ” Numerical Heat Transfer 7 (1984) 147-163.
[40] 吳一鳴,整合商用CFD軟體及簡易型共軛梯度法進行燃料電池堆之最佳化設計,國立成功大學航空太空工程學系碩士論文,台南,民國97年7月。
[41] 施順榮,整合基因演算法與熱流分析軟體進行散熱模組最佳化,國立成功大學航空太空工程學系碩士論文,台南,民國97年7月。
[42] 劉建晨,微熱電散熱模組流道設計與散熱效能之研究,國立中原大學機械工程學系碩士論文,中壢,民國96年7月。