簡易檢索 / 詳目顯示

研究生: 蘇上瑀
Su, Shang-Yu
論文名稱: 麥凱猜想與它的相關問題
McKay conjecture and related problems
指導教授: 黃世昌
Huang, Shih-Chang
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 39
中文關鍵詞: 有限群表現理論特徵理論麥凱猜想艾薩克斯-納瓦羅猜想伽洛瓦-麥凱猜想
外文關鍵詞: Representation theory of finite groups, Character theory, McKay conjecture, Isaacs-Navarro conjecture, Galois-McKay conjecture
相關次數: 點閱:1151下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇碩士論文中,主要是針對G. Navarro的一些著作的彙整與分析。第一章介紹基礎的群表現內容、第二章介紹McKay猜想以及其它相關的一些猜想、第三章主要是提到2007年由M. Issacs 和 G. Malle與 G. Navarro三人合力證明McKay猜想的約化定理,第四章是探討Block理論下的McKay猜想,而最後一章則是把Mckay猜想與Galois理論做結合。

    In this master's thesis, we mainly study the G. Navarro's academic publish and his book. The first chapter introduce the elementary of representation theory and character theory. The second chapter give McKay conjecture an introduction, and talk about its refinements. Third chapter is an easy introduction of the reduction theorem of McKay conjecture, which published by I. Martin, G. Malle and G. Navarro in 2007. The fourth chapter discuss the deep version of McKay conjecture under block theory. Finally, the last chapter give a combination of McKay conjecture and Galois theory

    1 Preliminary 1 1.1 Representation Theory Of Finite groups 1 1.2 Character Theory Of Finite Groups 3 2 Global-Local Counting Conjectures 6 2.1 McKay Conjecture 6 2.2 Isaacs-Navarro Conjecture 12 2.3 Relative McKay Conjecture 13 2.4 Alperin Weight Conjecture 14 2.5 Dade Conjecture 15 3 A Reduction Theorem For McKay Conjecture 17 3.1 Good Simples 17 3.2 Reduction Theorem 18 4 McKay Conjecture With Block Theory 20 4.1 Block 20 4.2 Brauer Character And p-Block 21 4.3 Brauer Correspondence 23 4.4 Blockwise Conjecture 24 5 McKay Conjecture With Galois Automorphisms 26 5.1 Galois Automorphisms 26 5.2 Galois Group Acts On Characters 27 5.3 Galois Group Acts On Conjugacy Classes 28 5.4 Galois=McKay Conjecture 29 5.5 Applications 31 Appendices 34 A GAP Code 35 B Notation 37 Bibliography 38

    [1] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd edition, Wiley (2003).
    [2] T. W. Hungerford, Abstract Algebra An Introduction, 3rd edition, Brook/Cole (2012).
    [3] T. W. Hungerford, Algebra, Springer (1974).
    [4] A. Baker, An Introduction to Galois Theory (2004).
    [5] S. R. Ghorpade, Notes on Galois Theory (1994).
    [6] J. S. Milne, Fields and Galois Theory (2020).
    [7] G. James and M. Liebeck, Representations and characters of groups, 2nd, Cambridge University press (2001).
    [8] B. Steinberg, Representation of finite groups, Spinger (2009).
    [9] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press (1987)
    [10] D. A. Craven, Representation Theory of Finite Groups: a Guidebook, Springer (2019)
    [11] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing (2006).
    [12] G. Navarro, Character theory and the Mckay conjecture, Cambridge Stud. Adv. Math. 175, Cambridge University Press (2018)
    [13] J. Mckay, Irreducible representation of odd degree, J. Algebra 20 (1972), 416-418.
    [14] I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math 95 (1973), 594-635.
    [15] I. M. Isaacs and G. Navarro, New refinements of Mckay conjecture for arbitrary finite groups, Ann. of Math. 156 (2002) 333-344.
    [16] G. Navarro, Linear characters of Sylow subgroups, J. Algebra. 269 (2003), 589-598.
    [17] P. Fong, The Isaacs-Navarro conjecture for symmetric groups, J. Algebra 250 (1) (2003) 154-161.
    [18] R. M. Guralnick, G. Malle and G. Navarro, Self-normalizing Sylow subgroups, Proc. Amer. Math. 132 (2003), 973-979.
    [19] G. Navarro, The Mckay conjecture and Galois automorphisms, Ann. of Math. 160 (2004), 1129-1140.
    [20] I. M. Isaacs, G. Malle and G. Navarro, A reduction theorem for the Mckay conjecture, Invent. Math 170 (2007), 33-101.
    [21] R. Nath, The Isaacs-Navarro conjecture for the alternating groups, J. Algebra 321 (2009), 1632-1642.
    [22] G. Malle, B. Spath, Characters of odd degree, Ann. of Math 184 (2016), 869-908.
    [23] G. Malle, Local-global conjectures in the representation theory of finite groups, Representation theory-current trends and perspectives.(2015)
    [24] G. Navarro, B. Sambale and Pham Huu Tiep, Characters and Sylow 2-subgroups of maximal class revisited, J. Pure Appl. Algebra 222 (2018), 3721-3732.
    [25] P. H. Tiep, Representations of finite groups and applications, Proc. Int. Cong. of Math. Rio de Janeiro (2018), 241-266
    [26] G. Navarro, B. Spath and C. Vallejo, A reduction theorem for the Galois-McKay conjecture, Trans. Amer. Math. 373 (2020), 6157-6183.
    [27] C. V. Vallejo, Character correspondences in solvable groups with a self-normalizing Sylow subgroup, J. Algebra Appl. 19 (2020)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE