| 研究生: |
李建賢 Lee, Chien-Hsien |
|---|---|
| 論文名稱: |
玻璃熔解窯爐中流動與熱傳行為之研究 Fluid Flow and Heat Transfer Behavior in Glass Melting Furnace |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 熱傳 、流動 、物理模型 、數學模型 、玻璃熔解窯爐 |
| 外文關鍵詞: | heat transfer, fluid flow, physical model, mathematical model, glass furnace |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
玻璃基板中殘留氣泡及夾雜物的多寡主要取決於玻璃熔解窯爐的澄清能力並對玻璃基板的品質有很大的影響。本研究針對玻璃熔解窯爐的熔融玻璃區發展一套三維數學模型,配合物理模型實驗,探討不同底吹氣體流量及電極加熱溫度下窯爐內的流動及熱傳行為,評估不同窯爐操作條件下的玻璃品質。
數學模型採用有限差分的數值解析方法,以SOLA-VOF計算流體力學技術計算窯爐內部的速度場、溫度場及窯爐使用分率等資訊。物理模型建構一縮小壓克力窯爐,利用矽油取代熔融玻璃,進行流動軌跡之觀測及最小滯留時間的量測,最後以最小滯留時間與窯爐使用分率作為評估玻璃品質的指標。
本研究分別探討三種底吹氣體流量與兩種電極加熱溫度,結果發現底吹氣體流量越大氣體攪拌環流及流動軌跡均越大,並有效提升最小滯留時間及窯爐使用分率,有助生產高品質的玻璃基板。電極加熱的操作條件僅小幅增加流動軌跡及窯爐使用分率卻大幅降低最小滯留時間,但由實驗觀測中可發現其可有效減少窯爐後段的懸浮氣泡濃度,因此需要更合適的玻璃品質評估指標來全面性評估玻璃品質。
The quantities of bubbles and inclusions that remain in glass substrate strongly depend on the refining ability of the glass melting furnace and have significant effects on the quality of glass substrate. This study, focused merely on the molten glass zone in the glass melting furnace, developed a mathematical model and a physical model to investigate fluid flow and heat transfer behaviors and to evaluate the glass qualities under different bubbling fluxes and heating temperatures.
By using finite difference method and a computational fluid dynamics technique, SOLA-VOF, the mathematical model could be used to analyze the velocity, temperature fields and active volume ratio of glass melting furnace. The physical model which executed in a reduced acrylic mold used silicon oil as a substitute for molten glass. The flow path and minimum residence time was recorded. The glass qualities under different operation conditions are evaluated by minimum residence time and active volume ratio of glass melting furnace in the end.
Three bubbling fluxes and two heating temperatures were investigated. The results showed that as the bubbling flux increases the bubbling circulation, flow path, and the minimum residence time and active volume ratio all increase. Therefore, the glass quality promotes as bubbling flux increases. To heating operating conditions, flow paths and active volume ratios are slightly raised, minimum residence times are significantly decreased, and suspended bubbles in the back zone of glass melting furnace are reduced. Therefore, the glass quality under heating should be evaluated by other appropriate glass quality indexes.
1.R. A. Murnane and D. A. Nolet, “EVOLUTION OF SIMULATION TECHNIQUES TO MODEL ELECTRIC GLASS FURNACE”, Industry Applications Society Annual Meeting Conference Record of the 1989 IEEE 1-5 Oct., Vol. 2, pp.1384-1394, 1989.
2.R. Viskanta, “Review of three-dimensional mathematical modeling of glass melting”, J. Non-Crystalline Solids, 177, pp.347-362, 1994.
3.B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 1. Under Ideal Conditions”, Glass Technology, 37(1), pp.29-34, 1996.
4.B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 2. Dissolved gas concentration”, Glass Technology, 37(3), pp.101-105, 1996.
5.B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 3. Bubble Trajectories”, Glass Technology, 37(4), pp.137-142, 1996.
6.B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 4. Bubble Number Density Distribution”, Glass Technology, 37(5), pp.164-168, 1996.
7.D. Shamp, O.Marin and M. Joshi, “Using Coupled Combustion/Glass Bath Numerical Simulation”, Ceram. Eng. Sci. Pro., 20, No.1, pp.23-36, 1999.
8.M. Petrick, S. L. Cheng and B. Golchert, “Coupled Combustion Space/Glass Melt Furnace Simulation”, Ceram. Eng. Sci. Pro., 22, No.1, pp.247-264. 2001.
9.B. Golchert, S. L. Chang and M. Petrick, “Validation of the Combustion Space Simulation of a Glass Furnace Model”, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Nov.11-16, pp.31-39, 2001.
10.V. Nefedov and R. M. M. Mattheij, “Simulation of flow in a glass tank”, In D. Cioranescu and J.-L. Lions(Eds.), “Non-linear Partial Differential Equations and their Applications”, Elsevier, pp.571-590, 2002.
11.P. Schill and J. Chmelar, “Use of computer flow dynamics in glass technology”, J. Non-Crystalline Solids, 345&346, pp.771-776, 2004.
12.M. K. Choudhary, “Recent Advances in Mathematical Modeling of Flow and Heat Transfer Phenomena in Glass Furnace”, J.Am. Ceram. Soc., 85[5], pp.1030-1036, 2002.
13.C. W. Hirt and B. D. Nichols, “Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries”, J. Comput. Phys., No. 39, pp.201-225, 1981.
14.D. L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion”, in Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines, Academic Press, pp.273-285, 1982.
15.鄭佩菁, “熔融材料製程中兩項流之流場解析研究”, 國立成功大學材料科學與工程學系碩士論文, 2002.
16.H. A. Schaeffer, “Scientific and technological challenge of industrial glass melting”, Solid State Ionics, 105, pp.265-270, 1998.
17.A. G. Fedorov and L. Pilon, “Glass foams: formation, transport properties, and heat, mass, and radiation transfer”, J. Non-Crystalline Solids, 311, pp.154-173, 2002.
18.C. Moukarzel, W. S. Kuhn and D. Clodic, “Numerical precision of minimum residence time calculations for glass tanks”, Glass Sci. Technology, 76(2), pp.81-90, 2003.
19.C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA-A Numerical Solution Algorithm for Transient Fluid Flows”, Los Alamos Scientific Laboratory Report LA-5852, 1975.
20.United States Patent, No.6085551, July 11, 2000.
21.F. H. Harlow and J. E. Welch, “Numerical Calculation of Time Dependent Viscous Incompressible Flow of Fluid with Free Surface”, Phys. Fluids, 8, pp.2182-2189, 1965.
22.彭勳章, “澆注與凝固過程之三維數值分析”, 國立成功大學工程科學研究所碩士論文, 1999.