簡易檢索 / 詳目顯示

研究生: 吳忠穎
Wu, Chung-Ying
論文名稱: 針對過載多重輸入輸出系統偵測演算法之研究
On the Detection Algorithms for Overloaded MIMO Systems
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 46
中文關鍵詞: 過載多輸入輸出球體解碼
外文關鍵詞: Overloaded MIMO, Sphere decoding
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對接收天線數等於甚至多於空間多工訊號傳送量之多重輸入輸出天線系統,許多低複雜度之偵測演算法相繼被提出以克服傳統 ML 解碼搜尋上的高複雜度問題。然而,目前仍鮮少有理想的偵測方法去探討當接收天線數少於傳送訊號數(過載多重輸入輸出)時的複雜度問題。
    在本篇論文中,首先我們將介紹幾種低運算複雜度的偵測定理,包含 ZF 和MMSE;同時為了改上述方法在天線數增加時可能的高錯誤率,我們將結合連續干擾消除 (SIC) 的方法來改善偵測錯誤的機率。另一方面,球體解碼為目前簡化多輸入輸出系統之運算搜尋的理想演算法,同時也能達到最佳的 ML 偵測效能。在分支分界的法則之下,進一步使用較小之搜尋半徑並結合 MMSE-SIC 解碼重新排列的系統架構,我們可以更有效縮小樹狀搜尋的範圍。
    最後,本論文將著重於解決過載訊號使用球體解碼時所遇到的偵測瓶頸。平板解碼藉由“接近”的概念將可能的解碼結果限制在一個平板中,避免過多搜尋而造成運算上的浪費。同時我們也利用 MMSE-SIC 的運算,使得系統模式可以更容易運用於球體解碼上。

    For multiple-input multiple-output (MIMO) antenna systems where the number of receive antennas is at least the number of signals multiplexed in spatial domain, ML detection can be implemented efficiently using sphere decoding or other suboptimal detectors, with reasonable performance and low complexity. Nonetheless, it is much less understood on obtaining good detection at affordable complexity if there are less number of receive antennas than transmitted signals (overloaded MIMO).
    In this thesis, we give a brief introduction to suboptimal MIMO detection including zero-forcing (ZF) and minimum mean-square error (MMSE) to reduce the high complexity of ML detection. And then, successive interference cancellation (SIC) technique is applied to improve the bit error rate performance. To achieve the ML detection, we propose sphere decoding combined with re-arranged search order, such that the tree-search complexity can be further reduced.
    Finally, we focus on the symbol detection of overloaded MIMO systems based on the aforementioned sphere decoding algorithms. From the closeness points by slab decoding, we can discard the unnecessary candidate sequences to efficiently obtain the exact ML performance. We also apply MMSE optimal SIC (OSIC) for overloaded MIMO systems to further reduce the detection complexity.

    Chinese Abstract I English Abstract II Acknowledgement III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction………………………………………1 Chapter 2 Suboptimal Detection Algorithms for MIMO Systems 2.1 System Model………………………………………………3 2.2 Maximum-likelihood Detection…………………………4 2.3 Zero-forcing Detection…………………………………4 2.4 Minimum Mean-square Error Detection………………6 2.5 Minimum Mean-square Error Combined with Successive Interference Cancellation…………………………………7 2.5.1 Successive Interference Cancellation…………7 2.5.2 MMSE Detection with Different Cancellation Order…7 2.6 Simulation Results………………………………………………………11 Chapter 3 Sphere Decoding Algorithm for Near-ML Detection 3.1 Introduction of Sphere Decoding…………………14 3.2 Conventional Sphere Decoding Algorithm………15 3.3 Branch-and-bound Searching Approach……………21 3.3.1 Introduction of Branch-and-bound...........21 3.3.2 Branch-and-bound Search for MIMO………………23 3.3.3 Simulation Results…………………………………24 3.4 Using Smaller Radius in the Earlier Layers of the MMSE-OSIC Detection Order……………………………………25 3.5 Simulation Results and Efficiency Comparison………27 Chapter 4 Efficient Decoding for Overloaded MIMO Antenna System 4.1 Detection Bottleneck of Overloaded MIMO……………30 4.2 Slab-sphere Decoding……………………………………31 4.2.1 Planar Detection for the Closeness Lattice Points…31 4.2.2 Slab-sphere Decoding…………………………………36 4.2.3 Efficiency Comparisons………………………38 4.3 Suboptimal Detection by Sphere Decoding Combined with MMSE-OSIC........40 4.4 Simulation Results………………………………………42 Chapter 5 Conclusions………………………………………44 Bibliography……………………………………………………45

    [1]F. Adachi, “Wireless past and future-evolving mobile communications systems,” IEICE Trans. Fundamentals, vol.E83-A, no.1, pp.55-60. Jan. 2001.
    [2]G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wirel. Pers. Commun., vol.6, no.3, pp.311-335, 1998.
    [3]R. van Nee, A. van Zelst, and G.. Awater, “Maximum likelihood decoding in a space division multiplexing system,” Proc. IEEE VTC 2000-Spring, vol.1, pp.6-10, May 2000.
    [4]G. Ying Hung and M. Wai How, "Complex lattice reduction algorithms for low-complexity MIMO detection," 2005, p. 5 pp.
    [5]A. D. Murugan, H. E. Gamal, M. O. Damen, and G. Caire, "A unified framework for tree search decoding: rediscovering the sequential decoder," Information Theory, IEEE Transactions on, vol. 52, pp. 933-953, 2006.
    [6]C. Windpassinger and R. F. H. Fischer, “Low-complexity near-maximum-likelihood detection and precoding for MIMO systems using lattice reduction,” pp. 345-348, 2003.
    [7]D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice reduction,” vol. 2, pp. 798-802, 2004.
    [8]Huan Yao and Gregory W.Wornell, “Lattice-reduction-aided for MIMO communication system”.
    [9]B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected complexity,” Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 53, pp. 2806-2818, 2005.
    [10]H. Vikalo, B. Hassibi, and P. Stoica, “Efficient joint maximum-likelihood channel estimation and signal detection,” Wireless Communications, IEEE Transactions., vol. 5, no. 7, July 2006.
    [11]M. Damen, H.El Gamal, and G. Caire, “On maximum-likelihood detection and the search for the closest lattice point,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2389-2402, Oct. 2003.
    [12]A. M. Chan, and I. Lee, “A new reduced-complexity sphere decoder for multiple antenna systems,” in Proc. IEEE Int. Conf. Commun., vol. 1, pp. 460-464, 28 Apr.-2 May 2002.
    [13]D. Pham, K. R. Pattipati, P. K. Willett, and L. Jie, "An improved complex sphere decoder for V-BLAST systems," Signal Processing Letters, IEEE, vol. 11, pp. 748-751, 2004.
    [14]K. K. Wong and A. Paulraj, “Near maximum-lilelihood detection with reduced-complexity for multiple-input single-output antenna systems,” in Proc. Asilomar Conf. on Signals, Systems, and Computers 2004, pp. 1158-1162.
    [15]M. O Damen, K. Abed-Meraim, and J. C. Befiore, “Generalized sphere decoder for asymmetrical space-time communication architecture,” Elect. Lett., vol. 36, no. 2, pp. 166-167, Jan. 2000.
    [16]Z. Yang, C. Liu, and J. He, “A new approach for fast generalized sphere decoding in MIMO systems,” IEEE Signal Processing Lett., vol. 12, no. 1, pp. 41-44, Jan. 2005.
    [17]T. Cui and C. Tellambura, “An efficient generalized sphere decoder for rank-deficient MIMO systems,” IEEE Commun. Lett., vol. 9, no. 5, May 2005.
    [18]K. K. Wong, A. Paulraj, and R.D. Murch, “Efficient high-performance decoding for overloaded MIMO antenna systems,” Wireless Communications, IEEE Transactions on, vol. 6, pp. 1833-1843, May 2007.

    下載圖示 校內:2011-07-01公開
    校外:2013-07-01公開
    QR CODE