| 研究生: |
楊楷晨 Yang, Kai-Chen |
|---|---|
| 論文名稱: |
三矩形管於空腔內之三維自然對流的熱傳特性 Study on Natural Convection Heat Transfer Characteristics for Three Rectangular Tubes in a Cavity |
| 指導教授: |
陳寒濤
Chen, Han-Taw 張錦裕 Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 逆向數值方法 、自然對流 、管式熱交換器 、矩形管 |
| 外文關鍵詞: | Inverse numerical method, natural convection, tubed heat exchanger, rectangular tube |
| 相關次數: | 點閱:108 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文擬以逆向數值方法配合實驗溫度數據來得出管式熱交換器於空腔中內的三維自然對流熱傳特性,並選取適當流動模型。空腔內有水平之兩支方管及一支矩形熱管,這兩支方管放置於矩形熱管上方,並且會隨著旋轉角度 θ 而改變位置。由於空腔內的流場在經過管式熱交換器時會產生複雜的流動且難以預測,為了瞭解其中的流動形式,本文利用逆向數值方法求得的溫度數據與實驗數據進行比較,選取方均根最小的流動模型來進行後續的分析,以期得到較正確的熱傳與流動特性。結果顯示於模擬中選用 RNG k-ε 紊流模型輔以增強型壁面處理和標準壁面函數較為符合實驗結果與趨勢,隨著管間距縮小,方管與矩形熱管的溫差會下降,而隨著旋轉角度改變,方管與熱邊界層接觸的面積增加,其與矩形熱管的溫差也會下降,由此可知,適當的旋轉角度及縮小管間距可以使空腔內的溫度分佈會更為平均。
In this study, the inverse numerical method and experimental temperature data are used to obtain the three-dimensional natural convection heat transfer characteristics of the tubed heat exchanger in the cavity, and an appropriate flow model is selected. There are two horizontal square tubes and one rectangular heat tube in the cavity. These two square tubes are placed above the rectangular heat tube and will change their positions with the rotation angle θ. Since the flow field in the cavity will generate complex flow and difficult to predict when passing through the tubed heat exchanger, in order to understand the flow in the cavity, the temperature data obtained by the inverse numerical method is compared with the experimental data, and select the flow model with the smallest root mean square for subsequent analysis, in order to obtain more accurate heat transfer and flow characteristics.
The results show that the selection of RNG k-ε turbulence model with enhanced wall treatment and standard wall function in the simulation is more in line with the experimental results and trends. As the distance between the square tube is reduced, the temperature difference between the square tube and the rectangular heat tube will decrease. With the change of the rotation angle, the contact area between the square tube and the thermal boundary layer increases, and the temperature difference between the square tube and the rectangular heat tube also decreases. From this, the temperature distribution in the cavity can be more uniform by appropriate rotation angle and reducing the distance between the square tube.
[1]S.C. Singhal, K. Kendall, High-temperature Solid Oxide Fuel Cells:Fundamentals, design and applications, Elsevier, New York, 2003.
[2]M. Peksen, 3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM, International Journal of Hydrogen Energy 39(10) (2014) 5137-5147.
[3]M. Peksen, D. Meric, A. Al-Masri, D. Stolten, A 3D multiphysics model and its experimental validation for predicting the mixing and combustion characteristics of an afterburner, International journal of hydrogen energy 40(30) (2015) 9462-9472.
[4]M. Peksen, Ro. Peters, L. Blum, D. Stolten, 3D coupled CFD/FEM modelling and experimental validation of a planar type air pre-heater used in SOFC technology, International journal of hydrogen energy 36(11) (2011) 6851-6861.
[5]K. Rashid, S.K. Dong, R.A. Khan, S.H. Park, Optimization of manifold design for 1 kW-class flat-tubular solid, oxide fuel cell stack operating on reformed natural gas, Journal of Power Sources 327 (2016) 638-652.
[6]H.T. Chen, M.C. Lin, J.R. Chang, Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall, International journal of heat and mass transfer 124 (2018) 1217-1229.
[7]H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, International Journal of Heat and Mass Transfer 109 (2017) 378-392.
[8]H.T. Chen, Y.L. Chang, P.Y. Lin, Y.J. Chui, J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, International Journal of Heat and Mass Transfer 118 (2018) 931-947.
[9]J. Zheng, L. Zhang, H. Yu, Y. Wang ,T. Zhao, Study on natural convection heat transfer in a closed cavity with hot and cold tubes, Science Progress 104(2) (2021) 00368504211020965.
[10] Y.G. Park, H.S. Yoon, M.Y. Ha, Natural convection in square enclosure with hot and cold cylinders at different vertical locations, International Journal of Heat and Mass Transfer 55(25-26) (2012) 7911-2925.
[11] A. Rincón-Casado , F. J. Sánchez de la Flor, E. Chacón Vera, J. Sánchez Ramos, New natural convection heat transfer correlations in enclosures for building performance simulation, Engineering applications of computational fluid mechanics 11(1) (2017) 340-356.
[12] M. Naveen, B. Venkata Sai Raghu Vamsi, T. Siva Krishna, Simulation Studies of Heat Transfer by Natural Convection from an Isothermal Rectangular Cylinder Using ANSYS Fluent, Theoretical Computational, and Experimental Solutions to Thermo-Fluid Systems. Springer, Singapore, 2021. 81-92.
[13] S. M. Elsherbiny, M. A. Teamah, A. R. Moussa, Natural convection heat transfer from an isothermal horizontal square cylinder, Alexandria Engineering Journal 56(1) (2017) 181-187.
[14] S. Saravanan, C. Sivaraj, Combined thermal radiation and natural convection in a cavity containing a discrete heater: effects of nature of heating and heater aspect ratio, International Journal of Heat and Fluid Flow 66 (2017) 70-82.
[15] S. Mahmud, P. K. Das , N. Hyder, Laminar natural convection around an isothermal square cylinder at different orientations, International communications in heat and mass transfer 29(7) (2002) 993-1004.
[16] O. Zeitoun, M. Ali, Numerical investigation of natural convection around isothermal horizontal rectangular ducts, Numerical Heat Transfer, Part A: Applications 50(2) (2006) 189-204.
[17] S. Rath, S. K. Dash, Effect of horizontal spacing and tilt angle on hermos-buoyant natural convection from two horizontally aligned square cylinders, International Journal of Thermal Sciences 146 (2019) 106113.
[18] I. V. Miroshnichenko, M. A. Sheremet, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review, Renewable and Sustainable Energy Reviews 82 (2018) 40-59.
[19] H.T. Chen, S.C. Chang, M.H. Hsu, C.H. You, Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC, International Journal of Heat and Mass Transfer 181 (2021) 121880.
[20] H.T. Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, International journal of heat and mass transfer 49(17-18) (2006) 3034-3044.
[21] H.T. Chen, W.L. Hsu, Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings, International journal of heat and mass transfer 50(9-10) (2007) 1750-1761.
[22] H.T. Chen, W.L. Hsu, Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection, International Journal of Heat and Mass Transfer 51(7-8) (2008) 1920-1932.
[23] H.T. Chen, J.C. Chou, H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, International Journal of Heat and Mass Transfer 50(1-2) (2007) 45-57.
[24] H.T. Chen, J.R. Lai, Study of heat-transfer characteristics on the fin of two-row plate finned-tube heat exchangers, International Journal of Heat and Mass Transfer 55(15-16) (2012) 45-57.
[25] H.T. Chen, S.T. Lai, L.Y. Huang, Investigation of heat-transfer characteristics in plate-fin heat sink, Applied Thermal Engineering 50(1) (2013) 352-360.
[26] H.T. Chen, Y.S. Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, International Journal of Heat and Mass Transfer 100 (2016) 320-331.
[27] H.T. Chen, Y.J. Chiu, H.C. Tseng, J.R. Chang, Effect of domain boundary set on natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, International Journal of Heat and Mass Transfer 109 (2017) 668-682.
[28] H.T. Chen, Y.L. Hsieh, P.C. Chen, Y.F. Lin, K.C. Liu, Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data, International Journal of Heat and Mass Transfer 127 (2018) 541-554.
[29] H.T. Chen, H.Y. Chou, H.C. Tseng, J.R. Chang, Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data, International Journal of Heat and Mass Transfer 127 (2018) 483-496.
[30] H.T. Chen, C.H. Lu, Y.S. Huang, K.C. Liu, Estimation of fluid flow and heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data, Heat and Mass Transfer 52(5) (2016) 969-979.
[31] H.T. Chen, W.X. Ma, P.Y. Lin, Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: Experimental and numerical study, International Journal of Heat and Mass Transfer 147 (2020) 118948.
[32] H.T. Chen, H.C. Tseng, S.W. Jhu, J.R. Chang, Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks, International Journal of Heat and Mass Transfer 111 (2017) 1050-1062.
[33] FLUID Dynamics Software, FLUENT 15, Lebanon, NH-USA, 2013.
[34] V. S. Arpaci, S. H. Kao, A. Selamet, Introduction to heat transfer, Prentice Hall, 1999.
[35] K. S. Chang, C. J. Choi, C. H. Cho, Laminar natural convection heat transfer from sharp-edged horizontal bars with flow separation, International journal of heat and mass transfer 31(6) (1988) 1177-1187.
[36] L. Prandtle, Uber die ausgebildete Turbulenz, Zamm, 5 (1925) 136- 139.
[37] Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and buildings 28(2) (1998) 137-144.
[38] B.E. Launder, D.B. Spalding, Mathematical Method of Turbulence, Academic, London, 1972. 3-51.
[39] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence, Journal of Scientific Computing 1(1) (1986) 3-51.
[40] F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA journal 32(8) (1994) 1598-1605.
[41] D.C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA journal 26(11) (1988) 1299-1310.
[42] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics engineering 3(1974) 269-289.
[43] M.N. Özışık, Heat Conduction, Wiley, 1993.
[44] B. E. Launder, D. B. Spalding, Mathematical Models of Turbulence, Academic press, 1972.