簡易檢索 / 詳目顯示

研究生: 馬沐那
Musa, Muna Mahamud
論文名稱: 優化金奈米粒子粒徑以提升 HE4側向流免疫分析在卵巢癌檢測之靈敏度
Optimization of Gold Nanoparticle Size for Enhanced Sensitivity of a HE4-Based Lateral Flow Assay in Ovarian Cancer Detection
指導教授: 楊閎蔚
Yang, Hung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 87
中文關鍵詞: 金奈米粒子側向流免疫分析靈敏度提升現場檢測卵巢癌
外文關鍵詞: Gold nanoparticles, lateral flow immunoassay, sensitivity enhancement, point-of-care testing, ovarian cancer
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早期偵測如 HE4 等癌症生物標誌物對於提升卵巢癌的治療成效至關重要。然而,傳統診斷工具在檢測低濃度標誌物時,往往缺乏足夠的靈敏度。側向流分析 (LFA) 具備免儀器、快速且易於操作的優勢,適合應用於現場檢測 (POC),但在早期癌症診斷中,其靈敏度仍是一大限制。
    本研究探討金奈米粒子 (AuNPs) 尺寸對針對 HE4 標誌物之 LFA 靈敏度的影響。實驗中合成了四種尺寸 (25、39、69 與 88 nm) 的 AuNPs,並進行膠體穩定性表徵,利用 MUA 作為連結基進行表面修飾,透過 EDC/NHS 化學反應將單株抗 HE4 抗體共價鍵結於 AuNPs 表面。接著將修飾後的 AuNP 引入夾心式 LFA 中,使 HE4 分子被 AuNPs 標記的抗體與檢測線上的次級抗體夾擊捕捉。結果顯示,在所測試的尺寸中,69 nm AuNPs 兼具最佳訊號強度與流動速率平衡,檢測極限 (LOD) 達到 0.1 ng/mL,優於多數先前報導的 AuNP-LFA 系統。較小粒徑的 AuNPs 具有較佳的流動性,而較大粒徑則提供較強的光學訊號,凸顯了尺寸依賴的性能取捨關係。
    本研究結果顯示,奈米粒子尺寸與表面功能化對 LFA 靈敏度具有關鍵影響。其中,69 nm AuNPs 在流體動力學與訊號增強間達到最佳平衡,能高靈敏檢測臨床相關濃度的 HE4。此研究證明,透過策略性優化奈米材料特性,可顯著提升檢測效能。本系統兼具低成本與高效能,適用於早期卵巢癌檢測,並適合在資源有限的現場檢測應用。

    Early detection of cancer biomarkers, such as human epididymis protein 4 (HE4), is crucial for improving outcomes in ovarian cancer. However, conventional diagnostic tools often lack the sensitivity needed to detect low biomarker concentrations. Lateral flow assays (LFAs) provide an affordable, rapid, and user-friendly platform suitable for point-of-care (POC) applications, but their limited sensitivity remains a major challenge in early-stage cancer diagnostics.
    This study evaluates the impact of gold nanoparticle (AuNP) size on the sensitivity of LFAs for HE4 detection. Four AuNP sizes (25, 39, 69, and 88 nm) were synthesized, characterized for colloidal stability, and functionalized with 11-mercaptoundecanoic acid (MUA) linkers. Monoclonal anti-HE4 antibodies were covalently conjugated to the AuNPs using EDC/NHS chemistry. The functionalized AuNPs were integrated into a sandwich-format LFA, in which HE4 was captured between AuNP-labeled antibodies and secondary antibodies immobilized on the test line. Among the tested sizes, 69 nm AuNPs achieved the optimal balance between signal intensity and flow rate, reaching a limit of detection (LOD) of 0.1 ng/mL—superior to several previously reported AuNP-based LFA systems. While smaller AuNPs exhibited enhanced mobility, larger particles generated stronger optical signals, revealing a size-dependent trade-off in assay performance.
    These results underscore the critical influence of nanoparticle size and surface functionalization on LFA sensitivity. Specifically, 69 nm AuNPs provided the best compromise between flow dynamics and signal enhancement, enabling highly sensitive HE4 detection at clinically relevant levels. This work demonstrates that rational optimization of nanomaterial properties can substantially improve LFA performance, offering a cost-effective and portable solution for early ovarian cancer detection, particularly in resource-limited settings.

    Approval Latter i 摘要 ii Abstract iii Acknowledgements iv Table of Contents v List of Tables vii List of Figures viii List of Abbreviations x Chapter 1 Introduction 1 1.1. Cancer 1 1.1.1 Overview of Cancer 1 1.1.2 Current Diagnostic Methods for Cancer 2 1.1.3 Challenges in Current Diagnostic Methods 4 1.2 Biosensors 5 1.2.1 Introduction to Biosensors 5 1.2.2 Biosensor Compassion 6 1.2.3 Point-of-Care Testing 11 1.2.4 Lateral Flow Assay (LAF) Strip 13 1.2.5 Gold Nanoparticles (AuNPs) 18 1.2.6 Role of AuNPs in LFAs 21 1.2.7. Applications of LFAs in Disease Diagnostics 22 1.3 Research Motivation and Purpose 25 Chapter 2 Materials and Methods 27 2.1. Materials 27 2.1.1. Experimental Chemicals 27 2.1.2. Experimental Instruments 28 2.2. Methods 29 2.2.1. Synthesis of AuNPs 29 2.2.2. Characterization of AuNPs 30 2.2.3. Stability Testing of AuNPs 31 2.2.4. Conjugation of Abs to AuNPs 31 2.2.5. Evaluation of Conjugation Efficiency and Functionality 34 2.2.6. Stability Test of the Particle 36 2.2.7 Preparations of the LFA 36 Chapter 3 Results 39 3.1 Characterization of Bare AuNPs 39 3.1.1. TEM Analysis of AuNPs 39 3.1.2. DLS, Zeta Potential Analysis and UV-Vis Spectroscopy 41 3.1.3. Stability Test of Bare AuNPs 43 3.2. AuNPs@Ab Conjugation Methods 45 3.2.1. Direct Adsorption Method 45 3.2.2. Covalent conjugation 53 3.3. Lateral Flow Assay Performance Analysis 62 3.3.1. Transfer of Abs Solution onto the Nitrocellulose Membrane (NCM) Using a PDMS Channel 62 3.3.2. Size-Dependent Sensitivity of AuNPs in LFA for HE4 Detection 63 3.3.3. Quantitative Analysis of Lateral Flow Assay Strip Intensities 65 Chapter 4 Discussion 67 Chapter 5 Conclusion 70 References 71

    1. Bray F, Laversanne M, Weiderpass E, and Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, vol. 16, 3029–3030 (2021).
    2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, and Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide. CA: A Cancer Journal for Clinicians, vol. 35, 226–250 (2024).
    3. Guida F, Kidman R, Ferlay J, Schüz J, Soerjomataram I, Kithaka B, Ginsburg O, Mailhot Vega RB, Galukande M, Parham G, Vaccarella S, Canfell K, Ilbawi AM, Anderson BO, Bray F, dos-Santos-Silva I, and McCormack V. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nature Medicine, vol. 28, 2563–2572 (2022).
    4. Ginsburg O, Bray F, Coleman MP, Vanderpuye V, Eniu A, Kotha SR, Sarker M, Huong TT, Allemani C, Dvaladze A, Gralow J, Yeates K, Taylor C, Oomman N, Krishnan S, Sullivan R, Kombe D, Blas MM, Parham G, Kassami N, and Conteh L. The global burden of women’s cancers: a grand challenge in global health. The Lancet, vol. 389 847–860, (2017).
    5. Clarke-Pearson DL. Screening for ovarian cancer. The New England Journal of Medicine, vol. 361, 170–177 (2009).
    6. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, and Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Reports, vol. 6, e1764 (2023).
    7. Fass L. Imaging and cancer: a review. Molecular Oncology, vol.2, 115–152. (2008).
    8. Chen M and Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Human Genomics, vol. 13, 34 (2019).
    9. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El‑Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, and Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Molecular Cancer, vol. 21, 79 (2022)
    10. Erfani P, Bates M, Garcia-Gonzalez P, Milner DA, Rebbeck TR, Ruhangaza D, Shulman LN, and Fadelu T. Leveraging molecular diagnostic technologies to close the global cancer pathology gap. JCO Global Oncology, 8, e2200182 (2022).
    11. Brand N, Qu L, Chao A, and Ilbawi A. Delays and barriers to cancer care in low- and middle-income countries: A systematic review. Oncologist, vol. 24, e1371–e1380 (2019).
    12. Sabr AK. Biosensors. American Journal of Biomedical Engineering, vol. 6, 170–179 (2016).
    13. Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, and Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): A systematic review. Biomedical Materials, vol. 17, 012002 (2021).
    14. Turner APF. Biosensors: sense and sensibility. Chemical Society Reviews, vol. 42, 3184–3196 (2013).
    15. Bright K, Voiculescu I, Penkova AN, and Untaroiu AA. Review of biosensors and their applications. ASME Open Journal of Engineering, vol. 2, 020201 (2023).
    16. Wu Q, Zhang Y, Yang Q, Yuan N, and Zhang W. Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors, vol. 19, 4916 (2019).
    17. AbdulKhaleque Md, Hossain SI, Ali MR, Aly MAS, Abuelmakarem HS, Al Mamun MS, and Khan MZH. Bioreceptor modified electrochemical biosensors for the detection of life threating pathogenic bacteria: a review. RSC Advances, vol. 14, 28487–28515 (2024).
    18. Wang X, Zhou J, and Wang H. Bioreceptors as the key components for electrochemical biosensing in medicine. Cell Reports Physical Science, vol. 5, 101801 (2024).
    19. Morales M and Halpern J. Guide to Selecting a biorecognition element for biosensors. Bioconjugate Chemistry, vol. 29, 3231–3239 (2018).
    20. Chen Z, Jin H, Yang Z, and He D. Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Metals, vol. 42, 1098–1117 (2022).
    21. Sharma S, Byrne H, and O’Kennedy RJ. Antibodies and antibody-derived analytical biosensors. Essays in Biochemistry, vol. 60, pp. 9–18 (2016).
    22. Grieshaber D, Mackenzie R, Voros J, and Reimhult E. Electrochemical biosensors-sensor principles and architectures. Sensors, vol. 8, 1400–1458 (2008).
    23. Acheampong D, Adokoh C, Ampomah P, Agyirifor D, Dadsie I, Akah F, and Asiamah E. Bispecific Antibodies (bsAbs): Promising immunotherapeutic agents for cancer therapy. Protein & Peptide Letters, vol. 24, 456–465 (2017).
    24. Katey B, Voiculescu I, Penkova AN, and Untaroiu A. A review of biosensors and their applications. ASME Open Journal of Engineering, vol. 2, 020201 (2023).
    25. Goswami A, Garg S, Bhatt E, Chaudhary V, and Dang S. Review nanotechnology-based biosensors for biomedical applications. Journal of The Electrochemical Society, vol. 171, 097508 (2024).
    26. Polat E, Cetin M, Tabak A, Guven E, Uysal B, Kabbani A, Hamed H, and Gul S. Transducer technologies for biosensors and their wearable applications. Biosensors, vol. 12, 385 (2022).
    27. Thevenot D, Toth K, Durst R, and Wilson G. Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics, vol. 16, 121–131 (2001).
    28. Vishnu Vardhan M, Thimmaiah P, Khaja Hussain S, and Scholar R. A review of biosensors and their medical applications. International Journal of Creative Research Thoughts (IJCRT), vol. 12, g190–g198 (2024).
    29. Damborsky P, Svitel J, and Katrlik J. Optical biosensors. Essays in Biochemistry, vol. 60, 91–100 (2016).
    30. Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, vol. 11, 448 (2018).
    31. Ramanathan K and Danielsson B. Principles and applications of thermal biosensors. Biosensors and Bioelectronics, vol. 16, 417–423 (2001).
    32. Holzinger M, Goff A, and Cosnier S. Nanomaterials for biosensing applications: A review. Frontiers in Chemistry, vol. 2, 63 (2014).
    33. Ashoka CH and Usha Saraswathi U. Biosensors–The point of care diagnostics (POCD): A review. SSR Institute of International Journal of Life Sciences, vol. 10, 5979–5987 (2024).
    34. Bhardwaj T, Ramana L, and Sharma T. Current Advancements and Future Road Map to Develop ASSURED Microfluidic biosensors for infectious and non-Infectious diseases. Biosensors, vol. 12, 357 (2022).
    35. Drain P, Hyle E, Noubary F, Freedberg K, Wilson D, Bishai W, Rodriguez W, and Bassett I. Diagnostic point-of-care tests in resource-limited settings. The Lancet Infectious Diseases, vol. 14, 239–249 (2014)
    36. Joshi A, Fishnu A, Sakorikar T, Kamal A, Faidya J, and Pandya H. Recent advances in biosensing approaches for point-of-care breast cancer diagnostics: Challenges and future prospects. Nanoscale Advances, vol. 3, 5542–5564 (2021).
    37. Posthuma-Trumpie G, Korf J, and Van Amerongen A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, vol. 393, 569–582 (2009).
    38. Mak W, Beni V, and Turner A, Lateral-flow technology: From visual to instrumental. Trends in Analytical Chemistry, vol. 79, 297–305 (2016).
    39. Banerjee R, and Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst, vol.143, 1970–1996 (2018).
    40. Vealan K, Joseph N, Alimat S, Karumbati A, and Thilakavathy K. Lateral flow assay: A promising rapid point-of-care testing tool for infections and non-communicable diseases. Asian Biomedicine, vol. 17, 250–266 (2023).
    41. Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu L, Rivas L, Alvarez-Diduk R, Nguyen EP, Cinti S, Quesada-Gonzalez D, and Merkoçi A. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, vol. 15, 3788–3816 (2020).
    42. Mirica A-C, Stan D, Chelcea I-C, Mihailescu CM, Ofiteru A, and Bocancia-Mateescu L-A. Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process. Frontiers in Bioengineering and Biotechnology, vol. 10, 922772 (2022).
    43. Bahadır E, and Sezgintürk M. Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, vol. 82, 286–306 (2016).
    44. Sajid M, Kawde A, and Daud M. Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society, vol. 19, 689–705 (2015).
    45. Goyal G, Sharma A, Tok A, Palaniappan A, and Liedberg B. Affimer sandwich probes for stable and robust lateral flow assaying. Analytical and Bioanalytical Chemistry, vol. 414, 4245–4254 (2022).
    46. Lamprou E, Kalligosfyri P, and Kalogianni D. Beyond traditional lateral flow assays: Enhancing performance through multianalytical strategies. Biosensor, vol. 15, 68 (2025).
    47. Singh S, Hasan MR, Jain A, Pilloton R, and Narang J. LFA: The mysterious paper-based biosensor—A futuristic overview. Chemosensors, vol. 11, 255 (2023).
    48. Wang Q, Jia Y, and Li J. Liquid transport strategies in wearable and implantable microfluidic systems. Lab on a Chip, vol. 25, 4252–4272 (2025).
    49. Kusuma JWA, Purwidyantri A, Xu J, Gani A, Arya SK, and Rahman MA. Gold nanoparticles in lateral flow assays for cancer biomarker detection: A review. Sensors, vol. 23, 8172 (2023)
    50. Kim D, Kim Y, Hong S, Kim J, Huh N, Lee M, Lee S, Kim B, Kim I, Huh Y, and Choi B. Development of lateral flow assay based on size-controlled gold nanoparticles for detection of hepatitis B surface antigen. Sensors, vol. 16, 2154 (2016).
    51. Das R, Dhiman A, Kapil A, Bansal V, and Sharma TK. Aptamer-gold nanozyme based competitive lateral flow assay for rapid detection of CA125 in human serum. Analytical and Bioanalytical Chemistry, vol. 412, 123–130 (2020)
    52. Ferrari E. Gold nanoparticle-based plasmonic biosensors. Biosensors, vol. 13, 411 (2023).
    53. Kusuma SA, Harmonis J, Pratiwi R, and Hasanah A. Gold nanoparticle-based colorimetric sensors: properties and application in detection of heavy metals and biological molecules. Sensors, vol. 23, 8172 (2023).
    54. Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, and Feng L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. International Journal of Molecular Sciences, vol. 21, 2480 (2020).
    55. Sarfraz N and Khan I. Plasmonic gold nanoparticles (AuNPs): Properties, synthesis and their advanced energy, environmental and biomedical applications. Chemistry - An Asian Journal, vol. 16, 720–742 (2021).
    56. Siddique S and Chow J. Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, vol. 10, 3824 (2020).
    57. Zhan L, Guo S, Song F, Gong Y, Xu F, Boulware D, McAlpine MC, Chan WCW, and Bischof JC. The Role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Letters, vol. 17, 7207–7212 (2017).
    58. Nguyenova HY, Sikorova M, Kalbacova MH, Jarolimkova J, Dendisova M, Kolska Z, Ulrychova L, Weber J, and Reznickova A, Stability and biological response of PEGylated gold nanoparticles. Heliyon, vol. 10, e30601 (2024).
    59. Chen X, Leng Y, Hao L, Duan H, Yuan J, Zhang W, Huang X, and Xiong Y. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics, vol. 10, 3737–3748 (2020).
    60. Chotithammakul S, Cortie M, Pissuwan D, Comparison of single-and mixed-sized gold nanoparticles on lateral flow assay for albumin detection. Biosensors, vol. 11, 209 (2021).
    61. Chen X, Ding L, Huang X, and Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics, vol. 12, 574–602 (2022).
    62. Banerjee R and Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst, vol. 143, 1970–1996 (2018).
    63. Martiskainen I, Juntunen E, Salminen T, Vuorenpaa K, Bayoumy S, Vuorinen T, Navin Khanna N, Pettersson K, Batra G, and Talha S. Double-antigen lateral flow immunoassay for the detection of anti-hiv-1 and -2 antibodies using upconverting nanoparticle reporters. Sensors, vol. 21, 330 (2021).
    64. Emamiamin A, Shariati Pour S, Serra T, Calabria D, Varone M, Di Nardo F, Guardigli M, AnfosSi L, Baggiani C, Zangheri M, and Mirasoli M, New frontiers for the early diagosis of cancer: Screening miRNAs through the lateral flow assay method. Biosensors, vol. 15, 238 (2025).
    65. Lu L, Yu J, Liu X, Yang X, Zhou Z, Jin Q, Xiao R, and Wang C. Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods. RSC Advances, vol. 10, 271–281 (2020).
    66. Carrio A, Sampedro C, Sanchez-Lopez J, Pimienta M, and Compoy P. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors, vol. 15, 29569–29593 (2015).
    67. Yahaya M, Zakaria N, Noordin R, and Abdul Razak K. Synthesis of large and stable colloidal gold nanoparticles (AuNPs) by seeding-growth method. Materials Today: Proceedings, vol. 66, 2943–2947 (2022).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE