簡易檢索 / 詳目顯示

研究生: 許晏綸
Hsu, Yen-Lun
論文名稱: 金相關奈米材料的特性與表面修飾
The Characterization and Surface Coating in Gold-Related Nanomaterials
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 53
中文關鍵詞: 金銅合金光熱治療局部表面電漿共振金奈米殼
外文關鍵詞: Gold-copper alloy, Photothermal therapy, LSPR, Gold nanoshell
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於探討金相關奈米材料、與其在經過表面修飾後的性質,共分為兩部分。在第一部分中,我們利用在近紅外光具有表面電漿共振吸收的金銅合金奈米粒子,討論其在表面修飾硫化銅後,在近紅外光雷射照射下,金銅合金與硫化銅間的表面電漿共振能量轉移,對於光熱轉換效率的影響;而在第二部分中,由於目前普遍合成金奈米殼的方法所需時間長且步驟繁複,因此本研究提出一改良後的方法,能在較短的時間內合成金奈米殼,且在實驗前處理及步驟上都較為便捷,進而能提升合成上的效率。

    The purpose of this study is to explore the gold-related nanomaterials’ surface coating and characterizations. There had two parts in this study. In the first part of our research, we synthesized gold-copper alloy nanoparticles which had a LSPR absorption in NIR region and then coated copper sulfide layer on the gold-copper alloy nanoparticle to explore whether the LSPR energy transfer between the two materials could enhance photothermal conversion efficiency. In the second part, we proposed an improved method to synthesize gold nanoshell which took less time and had easier procedure compared to the common methods. We also demonstrated that our method could be used to form different size and shell-thickness gold nanoshell.

    摘要 I 英文延伸摘要(ENGLISH EXTENDED ABSTRATE) II 致謝 IX 目錄 X 圖目錄 XII 表目錄 XIV 第一章 緒論 1 1-1 奈米粒子與表面電漿共振 1 1-2-1 表面電漿能量轉移方式 2 1-2 光熱治療 5 1-1-1 金相關奈米粒子在光熱治療的應用 7 1-1-2 硫化銅奈米粒子在光熱治療的應用 11 第二章 硫化銅包覆金銅合金奈米粒子用於光熱治療 13 2-1 實驗動機 13 2-2實驗藥品、儀器 14 2-2-1 實驗藥品 14 2-2-2 實驗器材 15 2-3 實驗方法 16 2-3-1 合成銅奈米立方體 (Cu NCs) 16 2-3-2 製備金銅合金奈米粒子 (AC NCs) 16 2-3-3 合成硫化銅包覆金銅合金奈米粒子 (AC NCs@CuxSy ) 17 2-3-4 硫化銅包覆金銅合金奈米粒子照射808nm 近紅外光雷射進行光熱轉換之升溫曲線之實驗步驟 17 2-4 結果與討論 18 2-4-1 材料鑑定 18 2-4-2 材料之光熱轉換效率 23 2-4-3 討論 25 2-5 結論 28 第三章 省時且便捷合成奈米金殼的方法 29 3-1 實驗動機 29 3-2 實驗藥品、儀器 30 3-2-1 實驗藥品 30 3-2-2 實驗器材 31 3-3 實驗方法 32 3-3-1 合成二氧化矽奈米粒子 (SiO2 NPs) 32 3-3-2 分離二氧化矽奈米粒子 32 3-3-3 鑑定二氧化矽奈米粒子 32 3-3-4 在二氧化矽奈米粒子表面修飾3-氨基丙基三乙氧基矽烷 (SiO2-APTES) 33 3-3-5 分離表面修飾3-氨基丙基三乙氧基矽烷之二氧化矽奈米粒子 33 3-3-6 鑑定表面修飾3-氨基丙基三乙氧基矽烷之二氧化矽奈米粒子 33 3-3-7合成金種 (Au-seeds) 33 3-3-8 3-氨基丙基三乙氧基矽烷修飾二氧化矽奈米粒子吸附金種 (SiO2-seeds) 34 3-3-9 分離表面吸附金種之二氧化矽奈米粒子 34 3-3-10 配製K-gold水溶液 (K-gold solution) 35 3-3-11 在二氧化矽奈米粒子表面形成金殼 (SiO2@Au) 35 3-3-12 分離包覆金殼之二氧化矽奈米粒子(SiO2@Au) 35 3-3-13 鑑定包覆金殼之二氧化矽奈米粒子 36 3-3-14 蝕刻二氧化矽模板形成金殼 (Au-shell) 36 3-3-15 分離金殼 36 3-3-16 鑑定金殼 36 3-4 結果與討論 37 3-5 結論 48 參考文獻 49

    1. Wang, Y. C.; Rheaume, E.; Lesage, F.; Kakkar, A., Synthetic Methodologies to Gold Nanoshells: An Overview. Molecules 2018, 23 (11).
    2. Zeng, S.; Baillargeat, D.; Ho, H. P.; Yong, K. T., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 2014, 43 (10), 3426-52.
    3. Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35 (3), 209-17.
    4. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 2017, 46 (13), 4042-4076.
    5. Yang, C. T.; Xu, Y.; Pourhassan-Moghaddam, M.; Tran, D. P.; Wu, L.; Zhou, X.; Thierry, B., Surface Plasmon Enhanced Light Scattering Biosensing: Size Dependence on the Gold Nanoparticle Tag. Sensors (Basel) 2019, 19 (2).
    6. Wang, J.; Lin, W.; Cao, E.; Xu, X.; Liang, W.; Zhang, X., Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy. Sensors (Basel) 2017, 17 (12).
    7. Kottmann, J. P.; Martin, O. F.; Smith, D. R.; Schultz, S., Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chemical Physics Letters 2001, 341 (1), 1-6.
    8. Schaadt, D. M.; Feng, B.; Yu, E. T., Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters 2005, 86 (6).
    9. Lee, J.; Shevchenko, E. V.; Talapin, D. V., Au-PbS Core-Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intra-particle Charge Transfer J. Am. Chem. Soc. 2008, 130 (30), 9673-75.
    10. Wu, N., Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 2018, 10 (6), 2679-2696.
    11. Huang, H. J.; Wu, J. C.-S.; Chiang, H.-P.; Chou Chau, Y.-F.; Lin, Y.-S.; Wang, Y. H.; Chen, P.-J., Review of Experimental Setups for Plasmonic Photocatalytic Reactions. Catalysts 2019, 10 (1).
    12. Webb, J. A.; Bardhan, R., Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014, 6 (5), 2502-30.
    13. Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: second window for in vivo imaging. Nat Nanotechnology 2009, 4 (11), 710-1.
    14. Hemmer, E.; Benayas, A.; Legare, F.; Vetrone, F., Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz 2016, 1 (3), 168-184.
    15. Melamed, J. R.; Edelstein, R. S.; Day, E. S., Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy. ACS Nano 2015, 9 (1), 6-11.
    16. Martin, S. J.; Henry, C. M.; Cullen, S. P., A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 2012, 46 (4), 387-97.
    17. Zhang, Y.; Zhan, X.; Xiong, J.; Peng, S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.; Li, R.; Yuan, K.; Zhou, N.; Min, W., Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 2018, 8 (1), 8720.
    18. Azharuddin, M.; Zhu, G. H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A. P. F.; Patra, H. K., A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019, 55 (49), 6964-6996.
    19. Ramasamy, T.; Ruttala, H. B.; Sundaramoorthy, P.; Poudel, B. K.; Youn, Y. S.; Ku, S. K.; Choi, H.-G.; Yong, C. S.; Kim, J. O., Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer. NPG Asia Materials 2018, 10 (4), 197-216.
    20. Zhang, Y.; Chang, J.; Huang, F.; Yang, L.; Ren, C.; Ma, L.; Zhang, W.; Dong, H.; Liu, J.; Liu, J., Acid-Triggered in Situ Aggregation of Gold Nanoparticles for Multimodal Tumor Imaging and Photothermal Therapy. ACS Biomaterials Science & Engineering 2019, 5 (3), 1589-1601.
    21. Doughty, A. C. V.; Hoover, A. R.; Layton, E.; Murray, C. K.; Howard, E. W.; Chen, W. R., Nanomaterial Applications in Photothermal Therapy for Cancer. Materials (Basel) 2019, 12 (5).
    22. He, R.; Wang, Y. C.; Wang, X.; Wang, Z.; Liu, G.; Zhou, W.; Wen, L.; Li, Q.; Wang, X.; Chen, X.; Zeng, J.; Hou, J. G., Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 2014, 5, 4327.
    23. Jia, F.; Yu, X.; Zhang, L., Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. Journal of Power Sources 2014, 252, 85-89.
    24. Christophe, J.; Doneux, T.; Buess-Herman, C., Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys. Electrocatalysis 2012, 3 (2), 139-146.
    25. Neatu, S.; Macia-Agullo, J. A.; Concepcion, P.; Garcia, H., Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 2014, 136 (45), 15969-76.
    26. Motl, N. E.; Ewusi-Annan, E.; Sines, I. T.; Jensen, L.; Schaak, R. E., Au-Cu Alloy Nanoparticles with Tunable Compositions and Plasmonic Properties:
    Experimental Determination of Composition and Correlation with Theory. J. Phys. Chem. C 2010, 114 (45), 19263–69.
    27. Chen, W.; Yu, R.; Li, L.; Wang, A.; Peng, Q.; Li, Y., A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew Chem Int Ed Engl 2010, 49 (16), 2917-21.
    28. Thota, S.; Zhou, Y.; Chen, S.; Zou, S.; Zhao, J., Formation of bimetallic dumbbell shaped particles with a hollow junction during galvanic replacement reaction. Nanoscale 2017, 9 (18), 6128-6135.
    29. Potemkin, D. I.; Semitut, E. Y.; Shubin, Y. V.; Plyusnin, P. E.; Snytnikov, P. V.; Makotchenko, E. V.; Osadchii, D. Y.; Svintsitskiy, D. A.; Venyaminov, S. A.; Korenev, S. V.; Sobyanin, V. A., Silica, alumina and ceria supported Au–Cu nanoparticles prepared via the decomposition of [Au(en)2]2[Cu(C2O4)2]3·8H2O single-source precursor: Synthesis, characterization and catalytic performance in CO PROX. Catalysis Today 2014, 235, 103-111.
    30. Shamraiz, U.; Hussain, R. A.; Badshah, A., Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry 2016, 238, 25-40.
    31. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Govind; Pal, K., Evolution of Hierarchical Hexagonal Stacked Plates of CuS from Liquid-Liquid Interface and its Photocatalytic Application for Oxidative Degradation of Different Dyes under Indoor Lighting. Environ. Sci. Technol. 2010, 44 (44), 6313-18.
    32. Chung, J. S.; Hosn, H. J., Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. Power Sources 2002, 108, 226-31.
    33. Li, J.; Jiu, T.; Tao, G. H.; Wang, G.; Sun, C.; Li, P.; Fang, J.; He, L., Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells. J Colloid Interface Sci 2014, 419, 142-7.
    34. Xu, J.; Zhang, J.; Yao, C.; Dong, H., Synthesis of novel highly porous CuS golf balls by hydrothermal method and their application in ammonia gas sensing. J. Chil. Chem. Soc. 2013, 58 (2), 1722-24.
    35. Liu, X.; Ai, L.; Jiang, J., Interconnected porous hollow CuS microspheres derived from metal-organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technology 2015, 283, 539-548.
    36. Ding, C.; Zhong, H.; Zhang, S., Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using nanoCuS tags. Biosens Bioelectron 2008, 23 (8), 1314-8.
    37. Liu, M.; Xue, X.; Ghosh, C.; Liu, X.; Liu, Y.; Furlani, E. P.; Swihart, M. T.; Prasad, P. N., Room-Temperature Synthesis of Covellite Nanoplatelets with Broadly Tunable Localized Surface Plasmon Resonance. Chemistry of Materials 2015, 27 (7), 2584-2590.
    38. Hsu, S. W.; Ngo, C.; Tao, A. R., Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett 2014, 14 (5), 2372-80.
    39. Silvester, E. J.; Grieser, F.; Sexton, B. A.; Healy, T. W., Spectroscopic studies on copper sulfide sols. Langmuir 1991, 7 (12), 2917-22.
    40. Li, Y.; Lu, W.; Haung, Q.; Haung, M.; Li, C.; Chen, W., Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5 (8), 1161-71.
    41. Lakshmanan, S. B.; Zou, X.; Hossu, M.; Ma, L.; Yang, C.; Chen, W., Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. J Biomed Nanotechnol 2012, 8 (6), 883-90.
    42. Chang, Y.; Cheng, Y.; Feng, Y.; Jian, H.; Wang, L.; Ma, X.; Li, X.; Zhang, H., Resonance Energy Transfer-Promoted Photothermal and Photodynamic Performance of Gold-Copper Sulfide Yolk-Shell Nanoparticles for Chemophototherapy of Cancer. Nano Lett 2018, 18 (2), 886-897.
    43. Ding, X.; Liow, C. H.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J., Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window J. Am. Chem. Soc. 2014, 136 (44), 15684-93.
    44. Peng, Z.; Li, S.; Weng, M.; Zhang, M.; Xin, C.; Du, Z.; Zheng, J.; Pan, F., First-Principles Study of Cu9S5: A Novel p-Type Conductive Semiconductor. The Journal of Physical Chemistry C 2017, 121 (42), 23317-23323.
    45. Lokhande, N. R.; Mande, C., A Study if Cold-Copper Alloys by X-Ray Absorption Spectroscopy. phys. stat. sol. 1980, 102, K11-14.
    46. Zhu, H.; Wang, J.; Wu, D., Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres. Inorg Chem 2009, 48 (15), 7099-104.
    47. Li, Z.; Hui, W., Cuprous Oxide Nanoshells with Geometrically Tunable Optical Properties. ACS Nano 2011, 5 (4), 3257-67.
    48. Wu, Z.-C.; Li, W.-P.; Luo, C.-H.; Su, C.-H.; Yeh, C.-S., Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials 2015, 25 (41), 6527-6537.
    49. Ji, M.; Xu, M.; Zhang, W.; Yang, Z.; Huang, L.; Liu, J.; Zhang, Y.; Gu, L.; Yu, Y.; Hao, W.; An, P.; Zheng, L.; Zhu, H.; Zhang, J., Structurally Well-Defined Au@Cu2- x S Core-Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency. Adv Mater 2016, 28 (16), 3094-101.
    50. Kim, Y. K.; Na, H. K.; Kim, S.; Jang, H.; Chang, S. J.; Min, D. H., One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small 2015, 11 (21), 2527-35.
    51. Clarke, C.; Liu, D.; Wang, F.; Liu, Y.; Chen, C.; Ton-That, C.; Xu, X.; Jin, D., Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. Nanoscale 2018, 10 (14), 6270-6276.
    52. Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of optical resonances. Chemical Physics Letters 1998, 288 (2), 243-47.
    53. James C. Y. Kah, J. C. Y.; Phonthammachai, N.; Wan, R. C. Y.; Song, J.; White, T.; Mhaisalkar, S.; Ahmadb, I.; Shepparda, C.; Olivoc, M., Synthesis of gold nanoshells based on the depositionprecipitation process. Gold Bull 2008, 41, 23-6.
    54. Brito-Silva, A. M.; Sobral-Filho, R. G.; Barbosa-Silva, R.; de Araujo, C. B.; Galembeck, A.; Brolo, A. G., Improved synthesis of gold and silver nanoshells. Langmuir 2013, 29 (13), 4366-72.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE