| 研究生: |
黃祈銘 Huang, Chi-Ming |
|---|---|
| 論文名稱: |
具環境響應與癌症標靶功能之高分子微胞在藥物標靶傳遞上的應用 Stimuli-responsive and Targeting Polymeric Micelles for the Applications of Controlled Drug Release and Target Delivery |
| 指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 雙親性嵌段共聚高分子 、溫度敏感性質高分子 、酸鹼值敏感性質高分子 、葉酸 、藥物釋放 |
| 外文關鍵詞: | amphiphilic block copolymer, thermo-responsive polymer, pH-responsive polymer, folic acid, drug carriers |
| 相關次數: | 點閱:80 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過兩種不同的新穎雙親性嵌段共聚高分子poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- 6-(methacrylamido)hexanoic acid] [PCL-b-P(TEGMA-co-AHA)]與poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- N-(2-(methacrylamido)ethyl) folatic amide] [PCL-b-P(TEGMA-co-FA)] 自組裝形成具多功能之複合高分子微胞,並針對其奈米結構、刺激應答性質(stimuli-responsive)與作為抗癌藥載體之應用進行研究。在本系統中以PCL作為可容納抗癌藥物的疏水鏈段,以具有溫度敏感性質的PTEGMA作為協助微胞分散於水中的親水鏈段,並在組成複合高分子微胞的兩種雙親性嵌段共聚高分子中分別於親水鏈段混摻微量具酸鹼值敏感性質的AHA與具癌症標靶功能的葉酸(Folic acid)。
在[PCL-b-P(TEGMA-co-AHA)]系列中,我們發現能夠透過改變AHA之混摻比例調整親水鏈段的親水性,進而將其最低臨界溶解溫度(lower critical solution temperature, LCST)調整至接近於人體體溫。當在不同酸鹼值環境時,高分子微胞由於AHA上的羧酸去質子化程度不同而改變微胞的親水性。因此在適當的AHA混摻比例下,我們可將微胞的LCST調整至在中性環境下高於37℃,而在酸性環境下低於37℃。如此一來,在接近中性的生理環境中藥物載體即可維持穩定的高分子微胞結構藉此在血液中達到較長的循環時間;並在接近酸性環境的癌細胞周圍由於LCST低於體溫而導致微胞崩解,達到快速藥物釋放的目的。
在[PCL-b-P(TEGMA-co-FA)]系列中,本研究將具有癌症標靶功能之葉酸以不同比例混摻於親水鏈段中以加速藥物在癌症細胞的累績。透過化學修飾於高分子側鏈的方式,我們能夠更準確的控制葉酸在高分子鏈中的含量,進而比較不同含量的葉酸對於癌細胞標靶功能之影響;並且利用TEGMA的保護避免其他酵素與葉酸非預期的作用與過早的內吞效應,藉以增加葉酸在癌症標靶功能之效率。此外,在複合高分子微胞系統中,透過調整兩種高分子的投料比例我們更能夠準確地控制微胞中葉酸含量與微胞的環境應答性質。
In this work, a new series of mixed polymeric micelles with multi-functionalities was investigated and their application as the carrier of anti-cancer drugs was explored. These micelles were self-assembled from two amphiphilic diblock copolymers, poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- 6-(methacrylamido)hexanoic acid] [PCL-b-P(TEGMA-co-AHA)] and poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- N-(2-(methacrylamido)ethyl) folatic amide] [PCL-b-P(TEGMA-co-FA)]. The hydrophobic core of micelles composed of the PCL block could act as the reservoir for hydrophobic drug, and the hydrophilic shell of micelles which facilities the dispersion of micelles in aqueous solution was functionalized with stimuli-responsive and actively targeting properties by tailoring the TEG, AHA and FA moieties as the pendants of the copolymers.
The stimuli-responsive properties of these micelles could be manipulated by adjusting the block ratio and the molar content of AHA, and the optimized lower critical solution temperature (LCST) was higher than 37℃ at physiological condition and lower than 37℃ in acidic environment so that the mixed micelles would have high stability in human body to get long circulation in blood and collapse around acidic cancer cell for rapidly drug delivery. Folic acid (FA) is known as a useful active-targeting ligand for the cancer cells overexpressed with folate receptors and widely used to improve micelles accumulation rate. We anchored folate within the corona layer PTEGMA because it has proved that the inert PTEGMA coronas are expected to protect FA moieties from undesirable enzymatic attack and premature endocytosis processes. By mixed micelles model, we could control the content of FA in nanoparticle more precisely.
[1] K. Letchford, H. Burt, European Journal of Pharmaceutics and Biopharmaceutics 2007, 65, 259.
[2] H. S. Kim, H. J. Kim, Y. K. Kwon, Molecular Crystals and Liquid Crystals 2007, 463, 25.
[3] S. Förster, M. Antonietti, Advanced Materials 1998, 10, 195.
[4] B. L. Paschalis Alexandridis, 2000.
[5] R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voight-Martin, L. Leibler, Macromolecules 1995, 28, 3080.
[6] A. Blanazs, S. P. Armes, A. J. Ryan, Macromolecular Rapid Communications 2009, 30, 267.
[7] W. Zhang, L. Shi, Y. An, L. Gao, K. Wu, R. Ma, Macromolecules 2004, 37, 2551.
[8] Y.-H. Hu, National Chemg Kung University, Department of Chemical Engineering, 2005.
[9] T. E. Patten, K. Matyjaszewski, Advanced Materials 1998, 10, 901.
[10] K. M. a. J. Xia, Chemical Reviews 2001, 101, 2921.
[11] W.-C. Wu, C.-Y. Chen, Y. Tian, S.-H. Jang, Y. Hong, Y. Liu, R. Hu, B. Z. Tang, Y.-T. Lee, C.-T. Chen, W.-C. Chen, A. K. Y. Jen, Advanced Functional Materials 2010, 20, 1413.
[12] F. D. Jochum, P. Theato, Chemical Communications 2010, 46, 6717.
[13] E. S. Gil, S. M. Hudson, Progress in Polymer Science 2004, 29, 1173.
[14] D. Schmaljohann, Advanced Drug Delivery Reviews 2006, 58, 1655.
[15] Y.-M. Sun, T.-L. Huang, Journal of Membrane Science 1996, 110, 211.
[16] F. Ilmain, T. Tanaka, E. Kokufuta, Nature 1991, 349, 400.
[17] C. d. l. H. Alarcon, S. Pennadam, C. Alexander, Chemical Society Reviews 2005, 34, 276.
[18] H. Schild, D. Tirrell, Macromolecules 1992, 25, 4553.
[19] I. Idziak, D. Avoce, D. Lessard, D. Gravel, X. X. Zhu, Macromolecules 1999, 32, 1260.
[20] K. Van Durme, S. Verbrugghe, F. E. Du Prez, B. Van Mele, Macromolecules 2004, 37, 1054.
[21] H. G. Schild, Progress in Polymer Science 1992, 17, 163.
[22] H. Ma, J. Hyun, P. Stiller, A. Chilkoti, Advanced Materials 2004, 16, 338.
[23] J.-F. Lutz, Ö. Akdemir, A. Hoth, Journal of the American Chemical Society 2006, 128, 13046.
[24] O. E. Philippova, D. Hourdet, R. Audebert, A. R. Khokhlov, Macromolecules 1997, 30, 8278.
[25] M. Torres-Lugo, N. A. Peppas, Macromolecules 1999, 32, 6646.
[26] S. R. Tonge, B. J. Tighe, Advanced Drug Delivery Reviews 2001, 53, 109.
[27] M. E. Eccleston, M. Kuiper, F. M. Gilchrist, N. K. H. Slater, Journal of Controlled Release 2000, 69, 297.
[28] S.-i. Yusa, A. Sakakibara, T. Yamamoto, Y. Morishima, Macromolecules 2002, 35, 10182.
[29] S.-i. Yusa, A. Sakakibara, T. Yamamoto, Y. Morishima, Macromolecules 2002, 35, 5243.
[30] M. Kyong Yoo, Y. Kiel Sung, Y. Moo Lee, C. Su Cho, Polymer 1998, 39, 3703.
[31] T. Peng, Y. L. Cheng, Polymer 2001, 42, 2091.
[32] V. T. Pinkrah, M. J. Snowden, J. C. Mitchell, J. Seidel, B. Z. Chowdhry, G. R. Fern, Langmuir 2003, 19, 585.
[33] C.-Y. Chen, T. H. Kim, W.-C. Wu, C.-M. Huang, H. Wei, C. W. Mount, Y. Tian, S.-H. Jang, S. H. Pun, A. K. Y. Jen, Biomaterials 2013, 34, 4501.
[34] S. Stolnik, L. Illum, S. S. Davis, Advanced Drug Delivery Reviews 1995, 16, 195.
[35] N. Nishiyama, K. Kataoka, "Nanostructured Devices Based on Block Copolymer Assemblies for Drug Delivery: Designing Structures for Enhanced Drug Function", in Polymer Therapeutics II, R. Satchi-Fainaro and R. Duncan, Eds., Springer Berlin Heidelberg, 2006, p. 67.
[36] K. Cho, X. Wang, S. Nie, Z. Chen, D. M. Shin, Clinical Cancer Research 2008, 14, 1310.
[37] A. Kumari, S. K. Yadav, S. C. Yadav, Colloids and Surfaces B: Biointerfaces 2010, 75, 1.
[38] A. H. Faraji, P. Wipf, Bioorganic & Medicinal Chemistry 2009, 17, 2950.
[39] Y. Mi, Y. Liu, S.-S. Feng, Biomaterials 2011, 32, 4058.
[40] W. Wang, D. Cheng, F. Gong, X. Miao, X. Shuai, Advanced Materials 2012, 24, 115.
[41] X. Li, Y. Qian, T. Liu, X. Hu, G. Zhang, Y. You, S. Liu, Biomaterials 2011, 32, 6595.
[42] T. Ren, A. Wang, W. Yuan, L. Li, Y. Feng, Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, 2303.
[43] A. Benahmed, M. Ranger, J.-C. Leroux, Pharm Res 2001, 18, 323.
[44] D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Pharm Res 2007, 24, 1029.
[45] X. J. Loh, Journal of Applied Polymer Science 2013, 127, 2046.
[46] Z. L. Tyrrell, Y. Shen, M. Radosz, Progress in Polymer Science 2010, 35, 1128.
[47] G. S. Kwon, T. Okano, Advanced Drug Delivery Reviews 1996, 21, 107.
[48] V. P. Sant, D. Smith, J.-C. Leroux, Journal of Controlled Release 2004, 97, 301.
[49] Y.-I. Jeong, J.-B. Cheon, S.-H. Kim, J.-W. Nah, Y.-M. Lee, Y.-K. Sung, T. Akaike, C.-S. Cho, Journal of Controlled Release 1998, 51, 169.
[50] G. Gaucher, M.-H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, J.-C. Leroux, Journal of Controlled Release 2005, 109, 169.
[51] C. Allen, D. Maysinger, A. Eisenberg, Colloids and Surfaces B: Biointerfaces 1999, 16, 3.
[52] K. Jette, D. Law, E. Schmitt, G. Kwon, Pharmaceutical Research 2004, 21, 1184.
[53] M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka*, Y. Sakurai, T. Okano, Journal of Controlled Release 1998, 50, 79.
[54] S. M. Moghimi, A. C. Hunter, J. C. Murray, Pharmacological Reviews 2001, 53, 283.
[55] S. M. Moghimi, J. Szebeni, Progress in Lipid Research 2003, 42, 463.
[56] Y. M. a. H. Maeda, Cancer Res 1986, 46, 6387.
[57] C. Oerlemans, W. Bult, M. Bos, G. Storm, J. Nijsen, W. Hennink, Pharmaceutical Research 2010, 27, 2569.
[58] R. Duncan, Nat Rev Drug Discov 2003, 2, 347.
[59] S. Bisht, A. Maitra, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2009, 1, 415.
[60] M. Gaumet, A. Vargas, R. Gurny, F. Delie, European Journal of Pharmaceutics and Biopharmaceutics 2008, 69, 1.
[61] J. Lu, N. Li, Q. Xu, J. Ge, J. Lu, X. Xia, Polymer 2010, 51, 1709.
[62] T. M. Allen, Nat Rev Cancer 2002, 2, 750.
[63] C. P. Leamon, J. A. Reddy, Advanced Drug Delivery Reviews 2004, 56, 1127.
[64] N. F. Saba, X. Wang, S. Müller, M. Tighiouart, K. Cho, S. Nie, Z. Chen, D. M. Shin, Head & Neck 2009, 31, 475.
[65] X. L. Wu, J. H. Kim, H. Koo, S. M. Bae, H. Shin, M. S. Kim, B.-H. Lee, R.-W. Park, I.-S. Kim, K. Choi, I. C. Kwon, K. Kim, D. S. Lee, Bioconjugate Chemistry 2010, 21, 208.
[66] N. Rapoport, W. G. Pitt, H. Sun, J. L. Nelson, Journal of Controlled Release 2003, 91, 85.
[67] R. Liu, M. Fraylich, B. Saunders, Colloid Polym Sci 2009, 287, 627.
[68] F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato, Y. Sakurai, T. Okano, Colloids and Surfaces B: Biointerfaces 1999, 16, 195.
[69] W. Cui, X. Lu, K. Cui, J. Wu, Y. Wei, Q. Lu, Nanotechnology 2011, 22, 065702.
[70] H.-C. Shin, A. W. G. Alani, H. Cho, Y. Bae, J. M. Kolesar, G. S. Kwon, Molecular Pharmaceutics 2011, 8, 1257.
[71] X.-B. Xiong, A. Falamarzian, S. M. Garg, A. Lavasanifar, Journal of Controlled Release 2011, 155, 248.
[72] T. Liu, Y. Qian, X. Hu, Z. Ge, S. Liu, Journal of Materials Chemistry 2012, 22, 5020.
[73] R. París, M. Liras, I. Quijada-Garrido, Macromolecular Chemistry and Physics 2011, 212, 1859.
[74] C. Chang, H. Wei, Q. Li, B. Yang, N. Chen, J.-P. Zhou, X.-Z. Zhang, R.-X. Zhuo, Polymer Chemistry 2011, 2, 923.
[75] T. Sarbu, K.-Y. Lin, J. Spanswick, R. R. Gil, D. J. Siegwart, K. Matyjaszewski, Macromolecules 2004, 37, 9694.
[76] S. Han, M. Hagiwara, T. Ishizone, Macromolecules 2003, 36, 8312.
[77] H.-G. Batz, G. Franzmann, H. Ringsdorf, Angewandte Chemie International Edition in English 1972, 11, 1103.
[78] M. Rutnakornpituk, N. Puangsin, P. Theamdee, B. Rutnakornpituk, U. Wichai, Polymer 2011, 52, 987.
[79] H. Lee, J. Rho, P. B. Messersmith, Advanced Materials 2009, 21, 431.