| 研究生: |
潘韻瑋 PAN, YUN-WEI |
|---|---|
| 論文名稱: |
H型梁與箱型柱彎矩接頭於火害後反覆載重行為之精確數值模擬 The Refined Numerical Simulations for the Post-Fire Cyclic Behaviors of H-Beam to Box-Column Moment Connections |
| 指導教授: |
鍾興陽
Chung, Hsin-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 315 |
| 中文關鍵詞: | 耐火鋼 、有限元素分析 、火害後 、梁柱接頭 、反覆載重實驗 |
| 外文關鍵詞: | Fire-Resistant Steel, Finite-Element Analysis, Post Fire, Beam-to-Column Connection, Cyclic Loading Test |
| 相關次數: | 點閱:214 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用三維非線性有限元素程式建立標準型、蓋板補強型、側板補強型、圓弧切削減弱型、梯形切削減弱型等五種梁柱接頭試體的精確數值模型,藉以模擬五種梁柱接頭試體於火害高溫火害前後分別受到反覆載重作用下之結構行為。五種梁柱接頭試體的精確數值模型中皆加入銲道、扇形孔及背墊板後,再將普通等級的鋼材與銲材、耐火等級的鋼材與銲材受到五種溫度處理(即:未受火害、受800℃火害後空氣冷卻、受900℃火害後空氣冷卻、受800℃火害後水中冷卻、受900℃火害後水中冷卻)後於反覆載重作用下之材料參數導入各模型中,用以模擬火害前後全普通鋼、全耐火鋼及部分耐火鋼之各式梁柱接頭試體於反覆載重作用下之耐震行為。本研究的數值模擬結果顯示:精確數值模型中銲道與扇形孔的模擬較簡化數值模型更能反映出火害後梁柱接頭在反覆作用下的真實行為;假設所研究之各式梁柱接頭在原服務載重下受到800°C以上的高溫火害後均未發生大變形破壞,精確數值模型對於火害後這些梁柱接頭試體再受到反覆載重試驗之模擬的結果亦顯示:本研究所分析的所有全普通鋼、全耐火鋼及部分耐火鋼之各式梁柱接頭試體在受到800°C以上的高溫火害後水冷,再接受反覆載重試驗,皆無法通過2010年AISC耐震規範的要求,然而,前述所有梁柱接頭試體在受到800°C以上的高溫火害後氣冷,雖然所有梁柱接頭的柱面彎矩強度皆較其火害前的柱面彎矩強度為低,但皆仍能符合耐震規範的要求。
This study developed the refined three-dimensional nonlinear finite-element numerical models for five types of H-beam to box-column moment connections, including standard type connection, cover-plated connection, side-plated connection, radius-cut flange profile connection and tapered flange profile connection, to simulate the pre-fire and post-fire structural behaviors of these beam-to-column moment connections under cyclic loadings. After adding the weld passes, weld access holes and weld backings in the refined numerical models of the five types of beam-to-column moment connections, the strain hardening parameters used in cycling loadings for the normal grade steel and weld materials and fire-resistant grade steel and weld materials subjected to five temperature treatments (i.e., no heat treatment, air-cooling after reaching 800ºC for 1 hour, water-cooling after reaching 800ºC for 1 hour, air-cooling after reaching 900ºC for 1 hour, and water-cooling after reaching 900ºC for 1 hour) were utilized in the numerical models to simulate the pre-fire and post-fire seismic-resistant behaviors of the normal steel, fire-resistant steel and partial fire-resistant steel beam-to-column moment connections under cyclic loadings. The numerical simulation results showed that adding the weld passes and weld access holes in the refined numerical models reflected more realistic post-fire structural behaviors of beam-to-column moment connections under cyclic loadings than those of the simplified numerical models. Assume that all types of beam-to-column moment connections, originally subjected to service loads, considered in this thesis did not fail due to large deflection after the fire with high temperature above 800ºC. The results from the refined numerical models of simulating these post-fire beam-to-column moment connection specimens to be tested by cyclic loadings showed that, after subjected to the fire of or above 800ºC and then water-cooled to room temperature, all the normal steel, fire-resistant steel and partial fire-resistant steel beam-to-column moment connection specimens analyzed in this thesis could not meet the 2010 AISC seismic-resistant requirements. However, after subjected to the fire of or above 800ºC and then air-cooled to room temperature, all the previously mentioned beam-to-column specimens could still meet the seismic -resistant requirements with the decreased column face flexural strengths.
ABAQUS HTML Documentation, “User’s Manual,” Dassault Systèmes Simulia Corp., Providence, RI, USA.
AISC “Seismic Provisions for Structural Steel Buildings, ”American Institute of Steel Construction, Chicago, Illonois, (2010).
Chen, C. C., Lee, J. M. and Lin, M. C., “Behaviour of Steel Moment Connections with a Single Flange Rib,” Engineering Structures, Vol. 25, Issue 11, pp. 1419-1428, (2003).
Chen, C. C., Lin, C. C. and Tsai, C. L., “Evaluation of Reinforced Connections Between Steel Beams and Box Columns,” Engineering Structures, Vol. 26, Issue 13, pp. 1889-1904, (2004).
Chen, S. J., Yeh, C. H. and Chu, J. M., “Ductile Steel Beam-to-Column Connections for Seismic Resistance,” Journal of Structural Engineering, ASCE, Vol. 122, Issue 11, pp. 1292-1299, (1996).
El-Tawil, S., Mikesell, T. and Kunnath, S. K., “Effect of Local Details and Yield Ratio on Behavior of FR Steel Connections,” Journal of Structural Engineering, ASCE, Vol. 126, Issue 1, pp. 79-87, (2000).
Engelhardt, M.D. and Sabol, T.A., “Reinforcing of steel moment connections with cover plates benefits and limitations,” Engineering Structures, Vol. 20, Issues 4-6, pp. 510-520, (1998).
FEMA, “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings,” Report No. FEMA-350, (2000).
Jones, S. L., Fry, G. T. and Engelhardt, M. D., “Experimental Evaluation of Cyclically Loaded Reduced Beam Section Moment Connections,” Journal of Structural Engineering, ASCE, Vol. 128, No. 4, pp. 441-451, (2002).
Kim, T., Whittaker, A. S., Gilani, A. S. J., Bertero, V. V. and Takhirov, S. M., “Experimental Evaluation of Plate-Reinforced Steel Moment-Resisting Connections,” Journal of Structural Engineering, ASCE, Vol. 128, No. 4, pp. 483-491, (2002).
Kiral, B. G. and Erim, S., “Performance of Steel Beam-to-Column Connections with Weld Defects under Inelastic Cyclic Loading,” Advances in Structural Engineering, Vol. 9, No. 4, pp. 561-575, (2006).
Lee, C. H., Jeon, S. W., Kim, J. H. and Uang, C. M., “Effects of Panel Zone Strength and Beam Web Connection Method on Seismic Performance of Reduced Beam Section Steel Moment Connections,” Journal of Structural Engineering, ASCE, Vol. 131, Issue 12, pp. 1854-1865, (2005).
Qiang, X., Bijlaard, F.S.K. and Kolstein, H., “Post-fire mechanical properties of high strength structural steels S460 and S690,” Engineering Structures, Vol. 35, pp. 1-10, (2012).
Qiang, X., Bijlaard, F.S.K. and Kolstein, H., “Post-fire performance of very high strength steel S960,” Journal of Constructional Steel Research, Vol. 80, pp. 235-242, (2013).
中華民國材料科學學會,「鋼鐵材料手冊」,科技叢書(1998)。
中華民國結構工程學會,「鋼結構設計手冊(極限設計法) 」,科技圖書股份有限公司 (2005)。
中華民國鋼結構協會技術委員會,「技術備忘錄第002號:H 梁扇形孔細部設計與施工」,中華民國鋼結構協會 (2011)。
王士銘,「火害後梁柱接頭銲接區拉力實驗之研究」,碩士論文,國立成功大學土木工程系,台南 (2011)。
吳家豪,「補強式梁柱韌性接頭高溫抗彎行為之數值模擬」,碩士論文,國立成功大學土木工程系,台南 (2009)。
吳家慶,「削切蓋板鋼骨梁柱接頭之耐震行為研究」,碩士論文,國立交通大學土木工程系,新竹 (2005)。
李明憲,「結構用鋼材火害後反覆載重行為之研究」,碩士論文,國立成功大學土木工程系,台南 (2012)。
李旋瑋,「火害後耐火鋼與普通鋼梁柱接頭反覆載重行為之數值模擬」,碩士論文,國立成功大學土木工程系,台南 (2013)。
李智民,「H型鋼柱接擴翼鋼梁抗彎接頭之耐震行為與設計」,碩士論文,國立交通大學土木工程系,新竹 (2006)。
周中哲 、蔡克銓、汪永宇、饒智凱,「鋼造梁柱側板補強接頭耐震設計及行為」,中國土木水利工程學刊22卷1期,第 85-97 頁,台北 (2010)。
周民瑜,「常見結構用鋼材火害後機械性質之研究」,碩士論文,國立成功大學土木工程系,台南 (2008)。
林日增,「H型梁-箱型柱耐火彎矩接頭高溫行為之數值模擬」,碩士論文,國立成功大學土木工程系,台南 (2008)。
林克強、莊勝智,「箱型柱與梁翼加蓋板補強抗彎接頭之韌性行為與設計方法」,結構工程期刊25卷2期,第 75-92 頁,台北(2010)。
林群洲,「肋板補強鋼骨箱型柱梁柱接頭之耐震行為」,碩士論文,國立交通大學土木工程系,新竹 (2002)。
林群洲,「鋼骨托梁抗彎接頭含梯度漸擴式梁翼板之耐震行為」,博士論文,國立交通大學土木工程系,新竹 (2006)。
林潔祥,「擴翼式鋼骨托梁抗彎接頭之耐震行為」,碩士論文,國立交通大學土木工程系,新竹 (2005)。
粘進發,「鋼箱型柱電熱熔渣銲接區火害後拉力實驗之研究」,碩士論文,國立成功大學土木工程系,台南 (2012)。
陳兆誼,「耐火鋼與普通鋼及相關梁柱接頭銲道火害後反覆載重行為之研究」,碩士論文,國立成功大學土木工程系,台南 (2013)。
陳宣維,「鋼骨圓弧切削梁柱接頭之耐震行為研究」,碩士論文,國立交通大學土木工程系,新竹 (1999)。
愛發股份有限公司編著,「ABAQUS實務入門引導」,全華科技圖書股份有限公司印行,台北(2005)
蔡岳勳,「實尺寸鋼結構梁柱彎矩接頭試驗與分析」,碩士論文,國立交通大學土木工程系,新竹 (2010)。
鄭瑋,「實尺寸複合梁鋼構架高溫火害行為之數值模擬」,碩士論文,國立成功大學土木工程系,台南 (2011)。
賴建霖,「鋼骨箱型柱內橫隔板電熱熔渣銲接之有限元素分析」,碩士論文,國立交通大學土木工程系,新竹 (2007)。
謝依平,「高層建築鋼結構韌性構架梁柱接頭之調查與研究」,碩士論文,國立成功大學建築系,台南 (2012)。
鐘明達,「鋼骨梁柱接頭耐震行為研究」,碩士論文,國立交通大學土木工程系,新竹 (1999)。
饒智凱,「鋼骨梁柱梁翼內側加勁補強接頭之耐震行為研究」,碩士論文,國立交通大學土木工程系,新竹 (2007)。
校內:2019-02-10公開