簡易檢索 / 詳目顯示

研究生: 林立文
Lin, Li-Wen
論文名稱: 以揮發成型法形成長金屬奈米線
Evaporation-induced Formation of Patterned and Long Metallic Nanowires
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: 揮發多肽奈米線
外文關鍵詞: Evaporation, Polypeptide, Nanowires
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當金屬線降至奈米尺度時,展現出許多特別的性質如超順磁性、光電效應等,因此金屬奈米線陣列有許多發展和應用,例如,在奈米感測和光電元件等方面。本研究提出揮發成型法(Evaporation-induced Formation)在玻璃基板上製作奈米金屬線。首先使用具有反應性之多肽分子合成金屬奈米粒子,接著利用毛細作用力使其填充微流道,靜置揮發形成微結構,之後再以高溫分解多肽分子而得到金屬奈米線。操作變數包含多肽的種類及濃度、流道的尺寸及表面性質等。實驗結果發現在流道深寬比為0.05時多肽溶液能順利填充流道,深寬比為1時則不行;對於較大深寬比的流道,施加氧電漿改質雖然可以容易地填滿流道,但是無法將揮發成型的微結構保留於基板。另外,當多肽濃度小於1 wt%時,所形成的微結構不連續;若濃度大於6 wt%則因為溶液黏度太高難以完全載入。使用3 wt%多肽溶液合成金奈米粒子,反應30分鐘後達穩定,所合成之金奈米粒子粒徑分佈範圍20nm~140nm。經揮發成型法能夠合成寬度40nm、高度60nm、長度約為1cm之均勻奈米線陣列。

    In recent years, applications of metallic nanowires have been widely explored in many areas such as nanosensing, Photonics and so on, and various approaches have been proposed and demonstrated to fabricate the nanowires. In this study, evaporation-induced formation of nanowires in conjunction with sintering to generate the metallic nanowires is proposed. The polypeptide solution after reduction reaction was loaded into the microchannel, followed by evaporation and sintering. A series of systematic experiments regarding the types of polypeptides, solution concentration, surface properties and dimensions of the microchannel was conducted. The results show that the polypeptide solution flows into the microchannel spontaneously when the aspect ratio of the microchannel is less than 0.05. Although O2 plasma treatment on the microchannel facilitates the flow of polypeptide solution into microchannel with larger aspect ratio, the deposited polypeptide microstructures cannot stay on the substrate. As to the solution concentration, the continuous line microstructure cannot be generated when using 1wt%. The solution concentration larger than 6wt% cannot be loaded into and fill the microchannel. When using 3wt% solution, gold nanoparticles with size ranging from 20 to 140 nm are obtained after 30-minute reduction reaction and the array of metallic nanowires with width 40nm, height 60nm and length 0.7cm were generated after sintering.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 X 第1章 、緒論 1 1.1 微奈米科技 1 1.2 奈米金屬線的應用與發展 2 1.3 研究動機與目的 2 第2章 、文獻回顧 4 2.1 金屬奈米線 4 2.1.1 前言 4 2.1.2 金屬奈米線的性質 4 2.1.3 金屬奈米線的製備 6 2.2 多肽 11 2.2.1 多肽的結構 11 2.2.2 多肽的合成 12 2.2.3 多肽的應用 13 2.3 本章圖表 15 第3章 、實驗方法 33 3.1 實驗材料與藥品 33 3.2 實驗儀器 35 3.3 實驗步驟 37 3.3.1 光微影製程 37 3.3.2 合成金奈米粒子 41 3.3.3 製作金奈米線 43 3.4 分析與量測 44 3.4.1 PDA紫外/可見分光譜儀(UV/Vis) 44 3.4.2 倒立式光學顯微鏡(OM) 44 3.4.3 原子力顯微鏡(AFM) 44 3.4.4 掃描式電子線微鏡(SEM) 47 3.4.5 穿透式電子顯微鏡(TEM) 48 3.4.6 ImageJ影像處理軟體 48 3.5 本章圖表 50 第4章 、結果與討論 79 4.1 多肽溶液於微流道中揮發成型 79 4.1.1 多肽體的影響 79 4.1.2 微流道尺寸和流道表面改質的影響 81 4.1.3 還原反應對成型結構的影響 84 4.1.4 小結 85 4.2 還原之多肽溶液於微流道中揮發成型 86 4.2.1 還原之多肽溶液的性質 86 4.2.2 鍛燒前 88 4.2.3 鍛燒後 89 4.3 本章圖表 91 第5章 、結論 136 第6章 、建議及未來工作 138 參考文獻 139

    [1] M. A. El-Sayed, "Some interesting properties of metals confined in time and nanometer space of different shapes," Accounts of Chemical Research, vol. 34, pp. 257-264, Apr 2001.
    [2] K. Mitamura, T. Imae, N. Saito, and O. Takai, "Fabrication and structure of alginate gel incorporating gold nanorods," Journal of Physical Chemistry C, vol. 112, pp. 416-422, Jan 2008.
    [3] S. Link and M. A. Ei-Sayed, "Optical properties and ultrafast dynamics of metallic nanocrystals," Annual Review of Physical Chemistry, vol. 54, pp. 331-366, 2003.
    [4] M. Z. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Physical Review B, vol. 76, p. 10, Dec 2007.
    [5] C. J. Murphy, T. K. Sau, A. Gole, and C. J. Orendorff, "Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures," Mrs Bulletin, vol. 30, pp. 349-355, May 2005.
    [6] J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, "Gold nanorods: Synthesis, characterization and applications," Coordination Chemistry Reviews, vol. 249, pp. 1870-1901, Sep 2005.
    [7] J. Perez-Juste, L. M. Liz-Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, "Electric-field-directed growth of gold nanorods in aqueous surfactant solutions," Advanced Functional Materials, vol. 14, pp. 571-579, Jun 2004.
    [8] G. Rubio-Bollinger, S. R. Bahn, N. Agrait, K. W. Jacobsen, and S. Vieira, "Mechanical properties and formation mechanisms of a wire of single gold atoms," Physical Review Letters, vol. 87, p. 4, Jul 2001.
    [9] D. E. Segall, S. Ismail-Beigi, and T. A. Arias, "Elasticity of nanometer-sized objects," Physical Review B, vol. 65, p. 10, Jun 2002.
    [10] S. Cuenot, C. Fretigny, S. Demoustier-Champagne, and B. Nysten, "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy," Physical Review B, vol. 69, p. 5, Apr 2004.
    [11] G. Rubio, N. Agrait, and S. Vieira, "Atomic-sized metallic contacts: Mechanical properties and electronic transport," Physical Review Letters, vol. 76, pp. 2302-2305, Mar 1996.
    [12] K. Gall, J. K. Diao, and M. L. Dunn, "The strength of gold nanowires," Nano Letters, vol. 4, pp. 2431-2436, Dec 2004.
    [13] H. X. He and N. J. Tao, "Interactions of molecules with metallic quantum wires," Advanced Materials, vol. 14, pp. 161-+, Jan 2002.
    [14] A. Bogozi, O. Lam, H. X. He, C. Z. Li, N. J. Tao, L. A. Nagahara, I. Amlani, and R. Tsui, "Molecular adsorption onto metallic quantum wires," Journal of the American Chemical Society, vol. 123, pp. 4585-4590, May 2001.
    [15] J. L. Costakramer, N. Garcia, P. Garciamochales, and P. A. Serena, "NANOWIRE FORMATION IN MACROSCOPIC METALLIC CONTACTS - QUANTUM-MECHANICAL CONDUCTANCE TAPPING A TABLE TOP," Surface Science, vol. 342, pp. L1144-L1149, Nov 1995.
    [16] J. L. CostaKramer, N. Garcia, P. GarciaMochales, P. A. Serena, M. I. Marques, and A. Correia, "Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes," Physical Review B, vol. 55, pp. 5416-5424, Feb 1997.
    [17] V. Rodrigues, T. Fuhrer, and D. Ugarte, "Signature of atomic structure in the quantum conductance of gold nanowires," Physical Review Letters, vol. 85, pp. 4124-4127, Nov 2000.
    [18] Y. G. Sun and Y. N. Xia, "Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process," Advanced Materials, vol. 14, pp. 833-837, Jun 2002.
    [19] Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, "Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)," Chemistry of Materials, vol. 14, pp. 4736-4745, Nov 2002.
    [20] A. Graff, D. Wagner, H. Ditlbacher, and U. Kreibig, "Silver nanowires," European Physical Journal D, vol. 34, pp. 263-269, Jul 2005.
    [21] B. J. Murray, E. C. Walter, and R. M. Penner, "Amine vapor sensing with silver mesowires," Nano Letters, vol. 4, pp. 665-670, Apr 2004.
    [22] E. C. Walter, F. Favier, and R. M. Penner, "Palladium mesowire Arrays for fast hydrogen sensors and hydrogen-actuated switches," Analytical Chemistry, vol. 74, pp. 1546-1553, Apr 2002.
    [23] P. Stoltze, "SIMULATIONS OF THE PREMELTING OF AL(110)," Journal of Chemical Physics, vol. 92, pp. 6306-6321, May 1990.
    [24] K. F. Peters, Y. W. Chung, and J. B. Cohen, "Surface melting on small particles," Applied Physics Letters, vol. 71, pp. 2391-2393, Oct 1997.
    [25] J. F. Lutsko, D. Wolf, S. R. Phillpot, and S. Yip, "MOLECULAR-DYNAMICS STUDY OF LATTICE-DEFECT-NUCLEATED MELTING IN METALS USING AN EMBEDDED-ATOM-METHOD POTENTIAL," Physical Review B, vol. 40, pp. 2841-2855, Aug 1989.
    [26] K. K. Nanda, S. N. Sahu, and S. N. Behera, "Liquid-drop model for the size-dependent melting of low-dimensional systems," Physical Review A, vol. 66, p. 8, Jul 2002.
    [27] F. Ercolessi, W. Andreoni, and E. Tosatti, "MELTING OF SMALL GOLD PARTICLES - MECHANISM AND SIZE EFFECTS," Physical Review Letters, vol. 66, pp. 911-914, Feb 1991.
    [28] K. F. Peters, J. B. Cohen, and Y. W. Chung, "Melting of Pb nanocrystals," Physical Review B, vol. 57, pp. 13430-13438, Jun 1998.
    [29] S. F. Xiao, W. Y. Hu, and J. Y. Yang, "Melting behaviors of nanocrystalline Ag," Journal of Physical Chemistry B, vol. 109, pp. 20339-20342, Nov 2005.
    [30] J. R. SAMBLES, "THESIS U LONDON," 1970.
    [31] R. S. Wagner, "Whisker Technology," Wiley-Interscience, 1970.
    [32] Y. Y. Wu and P. D. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, Apr 2001.
    [33] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, and W. E. Buhro, "Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway," Journal of the American Chemical Society, vol. 119, pp. 2172-2181, Mar 1997.
    [34] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "SOLUTION-LIQUID-SOLID GROWTH OF CRYSTALLINE III-V SEMICONDUCTORS - AN ANALOGY TO VAPOR-LIQUID-SOLID GROWTH," Science, vol. 270, pp. 1791-1794, Dec 1995.
    [35] C. R. Martin, "NANOMATERIALS - A MEMBRANE-BASED SYNTHETIC APPROACH," Science, vol. 266, pp. 1961-1966, Dec 1994.
    [36] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, "One-dimensional nanostructures: Synthesis, characterization, and applications," Advanced Materials, vol. 15, pp. 353-389, Mar 2003.
    [37] M. P. Zach, K. H. Ng, and R. M. Penner, "Molybdenum nanowires by electrodeposition," Science, vol. 290, pp. 2120-2123, Dec 2000.
    [38] C. X. Xiang, S. C. Kung, D. K. Taggart, F. Yang, M. A. Thompson, A. G. Guell, Y. A. Yang, and R. M. Penner, "Lithographically patterned nanowire electrodeposition: A method for patterning electrically continuous metal nanowires on dielectrics," Acs Nano, vol. 2, pp. 1939-1949, Sep 2008.
    [39] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, "Electron beam lithography in nanoscale fabrication: recent development," Ieee Transactions on Electronics Packaging Manufacturing, vol. 26, pp. 141-149, Apr 2003.
    [40] M. Q. Xue, Y. H. Yang, and T. B. Cao, "Well-positioned metallic nanostructures fabricated by nanotransfer edge printing," Advanced Materials, vol. 20, pp. 596-+, Feb 2008.
    [41] B. Messer, J. H. Song, and P. D. Yang, "Microchannel networks for nanowire patterning," Journal of the American Chemical Society, vol. 122, pp. 10232-10233, Oct 2000.
    [42] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature, vol. 409, pp. 66-69, Jan 2001.
    [43] Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, "Directed assembly of one-dimensional nanostructures into functional networks," Science, vol. 291, pp. 630-633, Jan 2001.
    [44] J. M. Berg, "Biochemistry," 1995.
    [45] J. N. Cha, G. D. Stucky, D. E. Morse, and T. J. Deming, "Biomimetic synthesis of ordered silica structures mediated by block copolypeptides," Nature, vol. 403, pp. 289-292, Jan 2000.
    [46] R. B. WOODWARD, "SYNTHESIS OF PROTEIN ANALOGS," JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 69, p. 1551, 1947.
    [47] H. Sekiguchi, "MECHANISM OF N-CARBOXY-ALPHA-AMINO ACID ANHYDRIDE (NCA) POLYMERIZATION," Pure and Applied Chemistry, vol. 53, pp. 1689-1714, 1981.
    [48] F. Cardinaux, J. C. Howard, G. T. Taylor, and H. A. Scheraga, "BLOCK COPOLYMERS OF AMINO-ACIDS .1. SYNTHESIS AND STRUCTURE OF COPOLYMERS OF L-ALANINE OR L-PHENYLALANINE WITH D,L-LYSINE-D7 OR D,L-LYSINE," Biopolymers, vol. 16, pp. 2005-2028, 1977.
    [49] J. C. Howard, F. Cardinaux, and H. A. Scheraga, "BLOCK COPOLYMERS OF AMINO-ACIDS .2. PHYSICOCHEMICAL DATA ON COPOLYMERS CONTAINING L-ALANINE OR L-PHENYLALANINE," Biopolymers, vol. 16, pp. 2029-2051, 1977.
    [50] T. J. Deming, "Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization," in Peptide Hybrid Polymers. vol. 202 Berlin: Springer-Verlag Berlin, 2006, pp. 1-18.
    [51] K. Y. Lee and D. J. Mooney, "Hydrogels for tissue engineering," Chemical Reviews, vol. 101, pp. 1869-1879, Jul 2001.
    [52] M. P. Lutolf and J. A. Hubbell, "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering," Nature Biotechnology, vol. 23, pp. 47-55, Jan 2005.
    [53] A. P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D. J. Pine, D. Pochan, and T. J. Deming, "Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles," Nature, vol. 417, pp. 424-428, May 2002.
    [54] T. J. Deming, "Polypeptide hydrogels via a unique assembly mechanism," Soft Matter, vol. 1, pp. 28-35, Jun 2005.
    [55] Y. Shao, Y. D. Jin, and S. J. Dong, "Synthesis of gold nanoplates by aspartate reduction of gold chloride," Chemical Communications, pp. 1104-1105, May 2004.
    [56] S. K. Bhargava, J. M. Booth, S. Agrawal, P. Coloe, and G. Kar, "Gold nanoparticle formation during bromoaurate reduction by amino acids," Langmuir, vol. 21, pp. 5949-5956, Jun 2005.
    [57] P. Selvakannan, S. Mandal, S. Phadtare, A. Gole, R. Pasricha, S. D. Adyanthaya, and M. Sastry, "Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid," Journal of Colloid and Interface Science, vol. 269, pp. 97-102, Jan 2004.
    [58] S. Brown, M. Sarikaya, and E. Johnson, "A genetic analysis of crystal growth," Journal of Molecular Biology, vol. 299, pp. 725-735, Jun 2000.
    [59] S. Si and T. K. Mandal, "Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study," Chemistry-a European Journal, vol. 13, pp. 3160-3168, 2007.
    [60] R. R. Bhattacharjee, A. K. Das, D. Haldar, S. Si, A. Banerjee, and T. K. Mandal, "Peptide-assisted synthesis of gold nanoparticles and their self-assembly," Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1141-1147, Jul 2005.
    [61] Z. Wang, J. C. Chen, P. Yang, and W. T. Yang, "Biomimetic synthesis of gold nanoparticles and their aggregates using a polypeptide sequence," Applied Organometallic Chemistry, vol. 21, pp. 645-651, Aug 2007.
    [62] R. Djalali, Y. F. Chen, and H. Matsui, "Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates," Journal of the American Chemical Society, vol. 125, pp. 5873-5879, May 2003.
    [63] J. M. Slocik, M. O. Stone, and R. R. Naik, "Synthesis of gold nanoparticles using multifunctional peptides," Small, vol. 1, pp. 1048-1052, Nov 2005.
    [64] J. L. Burt, C. Gutierrez-Wing, M. Miki-Yoshida, and M. Jose-Yacaman, "Noble-metal nanoparticles directly conjugated to globular proteins," Langmuir, vol. 20, pp. 11778-11783, Dec 2004.
    [65] Y. Zhou, W. X. Chen, H. Itoh, K. Naka, Q. Q. Ni, H. Yamane, and Y. Chujo, "Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature," Chemical Communications, pp. 2518-2519, 2001.
    [66] J. M. Slocik, R. R. Naik, M. O. Stone, and D. W. Wright, "Viral templates for gold nanoparticle synthesis," Journal of Materials Chemistry, vol. 15, pp. 749-753, 2005.
    [67] E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, "Microfluidic networks for chemical patterning of substrate: Design and application to bioassays," Journal of the American Chemical Society, vol. 120, pp. 500-508, Jan 1998.
    [68] C. R. Raj, T. Okajima, and T. Ohsaka, "Gold nanoparticle arrays for the voltammetric sensing of dopamine," Journal of Electroanalytical Chemistry, vol. 543, pp. 127-133, Feb 2003.

    下載圖示 校內:2014-07-12公開
    校外:2013-07-12公開
    QR CODE