簡易檢索 / 詳目顯示

研究生: 邱騰億
Chiu, Teng-Yi
論文名稱: 氧化鈰與氧化鉻添加對鍶鋇鈮陶瓷介電性質及老化之影響
Effects of Ceria and Chromia on the Dielectric Behavior and Aging of Strontium Barium Niobate
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 119
中文關鍵詞: 介電老化
外文關鍵詞: Dielectric, Aging
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鍶鋇鈮陶瓷是一種透光材料,而且具有很高的線性光電係數、高的焦電係數以及良好的光折射效應。儘管鍶鋇鈮單晶的成長技術及其性質已廣泛被研究,但因價格與製造上的困難故應用上有其限制所在,因此開發鍶鋇鈮多晶陶瓷乃必然趨勢。
    利用Vugmeister’s 理論分析探討不同添加Cr2O3、CeO2、共同添 加Cr2O3、CeO2 對TO的影響,得知隨添加量增加,T0 下降,所以Random Fields 影響較大。另外將Vugmeister’s 理論dynamic scaling law 將這 兩公式結合可以使介電理論值和介電測量值契合的很好,在一頻率的介電值為基準下。而有關老化(aging)時間對介電有很大的影響,這結果主要是因為domain wall pinning 效應。

    Strontium barium niobate ( SBN ) ceramic is a good electro-optic material .It has very high linear electro -optical coefficient、high pyroelectric coefficient and good photorefractive effect. Though the properties of the single crystal, SBN, has been intensively studied, high cost and difficult fabrication have limited its practical use. Hence, it is necessary to develop strontium barium niobate ceramic.
    Using Vugmeister's law to analyze the effects of TO . Cr-doped SBN50、 Ce-doped SBN50 Cr、Ce -codoped SBN50 increases with increasing doping content, and TO are the reduction. SO it reflects the strong influence on Random fields. Besides we used Vugmeister's law and dynamic scaling law, it can match very good with theoretical and experimental on the basis of a specific frequency. Large aging effects, investigated via temporal dependences of the dielectric response. The result is discussed on the basis of domain wall pinning effects.

    中文摘要...................................................Ⅰ 英文摘要...................................................Ⅱ 圖目錄....................................................iv 表目錄..................................................xiii 第一章緒論..................................................1 1.1 前言...................................................1 1.2 研究目的................................................2 第二章理論基礎與文獻回顧......................................3 2-1 鍶鋇鈮結構..............................................3 2-2 介電理論...........................................................................................9 2.2.1 介電常數(dielectric constant) .......................................................9 2.2.2 介電損失(dielectric loss,tanδ) ..................................................10 2.2.3 SBN介電性質................................................................................13 2.2.4 極化機制.............................................................................................16 2.2.5 晶域(domain)...............................................................................27 2-3 SBN 的陶瓷製程..............................................................................29 2-3-1 SBN 粉末合成機構.......................................................................29 2-3-2 SN 與BN 合成SBN 的反應機構模型........................................29 2-3-3 SBN 單相燒結之顯微結構演進與控制.......................................30 2-4 Random Fields (RFs) ........................................................................37 2-4-1 Relaxor............................................................................................37 2-4-2 FC 和ZFC......................................................................................39 2-4-3 純SBN 的RFs..............................................................................39 2-4-4 有添加物SBN 的RFs..................................................................42 2-4-5 在失序鐵電(disordered ferroelectrics)中的Random electric fields..................................................................................................................51 2-5 Polar nanoregion(PNR) .....................................................................55 2-5-1 PMN 的相轉變...............................................................................55 2-5-2 Relaxors in the ergodic state...........................................................56 2-5-3 PNRs的實驗証實...........................................................................58 2-5-4PNRs的來源與發展........................................................................60 第三章實驗方法及步驟........................................................................62 3-1 實驗藥品..........................................................................................62 3-2 製備粉末與試片..............................................................................63 3-3 分析設備與量測方法......................................................................64 3-3-1 X-ray繞射分析..............................................................................64 3-3-2. 介電性質分析............................................................................64 第四章結果與討論...............................................................................67 4-1 介電性質..........................................................................................67 4-2 利用Vugmeister's 理論fitting.......................................................83 4-3 dynamic scaling law..........................................................................92 4-4 結合Vugmeister’s[31][32] 理論 dynamic scaling law......................102 4-5 介電老化.........................................................................................110 第五章 結論..........................................................................................115 第六章 參考文獻..................................................................................116 圖目錄 圖2-1 SBN在(001)平面的投影............................................................5 圖2-2 SBN之鎢青銅結構中,各離子之配位結構,(a) NbO6八面體之B1結構,(b) Nb6八面體之B2結構,(c) Sr在A1位置的配位結構,(d) Sr/Ba在A2位置的配位結構,(e) C位置的配位結構…..........................................................................................6 圖2-3 SBN相圖......................................................................................7 圖2-4 外加電場下介電材料放入平行板電容器之電荷分離現象......11 圖2-5 電容器的充電電流與損失電流..................................................12 圖2-6 SBN結構中,各離子偏移及極化方向示意圖..........................14 圖2-7 不同組成的SBN 在頻率1KHz 下,介電對溫度的變化...........15 圖2-8 電子極化之示意圖( a )未施加電場( b )施加電場.....................19 圖2-9 電子極化率與離子價數及半徑之示意圖..................................19 圖2-10 離子極化之示意圖( a )未施加電場( b )施加電場...................21 圖2-11 電偶極極化之示意圖( a )未施加電場( b )施加電場...............24 圖2-12 電偶極極化與頻率之關係圖....................................................25 圖2-13 四種極化機構之示意圖............................................................26 圖2-14 不同頻率下之四種極化機構....................................................27 圖2-15 鈦酸鋇( a )多晶結構與其( b )晶域之示意圖...........................28 圖2-16 形成SBN反應模型之示意圖,(a) 胚體粉末堆積情形,其排列的堆積情形由所配置的組成決定,(b) 反應初期,Sr和Ba離子藉由表面擴散於SN或BN粉末顆粒表面覆蓋一層所配組成的Sr/Ba比例之離子(c) 於每一粉末顆粒表面直接反應行程所配組成的SBN殼,然後Sr再和Ba離子再經由步驟(b)並通過所形成的SBN殼繼續反應...............31 圖2-17 組成為(Sr0.6Ba0.4)O:Nb2O5=(A) 0.48:0.52和(B) 0.53:0.47的顯微結構..............................................................................33 圖2-18 燒結SBN60陶瓷的示意圖......................................................36 圖2-19 經過場冷( field-cooled )處理的試片其溫度和極化的圖......40 圖2-20 經過零場冷( zero field-cooled )處理的試片其溫度和極化的圖..............................................................................................41 圖2-21 室溫〈101〉SAED(selected area electron diffraction)在各(100)方位的SBN成份(a) SBN 50/50 (b) SBN 60/40 (c) SBN75/25.........................................................................................43 圖2-22 內部電場影響示意圖,橢圓代表鐵電電域,小圓代表內部電荷載子.....................................................................................45 圖2-23 180°電域在一個向上方向(或中立)的環境給於一個向下極化在溫度(a) T = 295K (b) T = 325K (c) T = 350K,左邊為全部尺寸的圖,右邊為在電域邊緣的局部放大圖...........46 圖2-24 有照度( illumination )和沒有照度的BN61:Ce ( 0.66mol% )在移除外加電場後電子極化的衰退( decay )圖....................50 圖2-25 Typical uncorrelated ion displacements (shown by smallarrows) in the unit cell of the lead-containing complex perovskite relaxor. Thick arrows show the direction of the local spontaneous polarisation P caused bythe correlated displacements of ions inside PNRs........................................57 圖2-26 在PMN材料不同溫度下PNR的大小尺寸...................................59 圖2-27 n為折射率,V為Unit cell的體積,1/ε為介電常數的倒數,△n為canonical relaxor,和溫度的關係................................................59 圖2-28 兩種形成PNRs不同模型..........................................................61 圖3-1 實驗流程圖.................................................................................66 圖4-1(a) undoped SBN50 不同頻率的介電常數對溫度的變化圖…69 圖4-1(b) undoped SBN50 不同頻率的介電損失值對溫度的變化圖.................................................................................................................69 圖4-2(a) doped Cr 0.5mole% SBN50 不同頻率的介電常數對溫度的變化圖.......................................................................................70 圖4-2(b) doped Cr 0.5mole% SBN50 不同頻率的介電損失值對溫度的變化圖...................................................................................70 圖4-3(a) doped Cr 1.0mole% SBN50 不同頻率的介電常數對溫度的變化圖.......................................................................................71 圖4-3(b) doped Cr 1.0mole% SBN50 不同頻率的介電損失值對溫度的變化圖...............................................................................71 圖4-4(a) doped Cr 1.5mole% SBN50 不同頻率的介電常數對溫度的變化圖........................................................................................72 圖4-4(b) doped Cr 1.5mole% SBN50 不同頻率的介電損失值對溫度的變化圖....................................................................................72 圖4-5(a) doped Cr 2.0mole% SBN50 不同頻率的介電常數對溫度的變化圖........................................................................................73 圖4-5(b) doped Cr 2.0mole% SBN50 不同頻率的介電損失值對溫度的變化圖....................................................................................73 圖4-6(a) doped Ce 0.5mole% SBN50 不同頻率的介電常數對溫度的變化圖....................................................................................74 圖4-6(b) doped Ce 0.5mole% SBN50 不同頻率的介電損失值對溫的變化圖....................................................................................74 圖4-7(a) doped Ce 1.0mole% SBN50 不同頻率的介電常數對溫度的變化圖........................................................................................75 圖4-7(b) doped Ce 1.0mole% SBN50 不同頻率的介電損失值對溫度的變化圖................................................................................75 圖4-8(a) doped Ce 1.5mole% SBN50 不同頻率的介電常數對溫度的變化圖....................................................................................76 圖4-8(b) doped Ce 1.5mole% SBN50 不同頻率的介電損失值對溫度的變化圖................................................................................76 圖4-9(a) doped Ce 2.0mole% SBN50 不同頻率的介電常數對溫度的變化圖....................................................................................77 圖4-9(b) doped Ce 2.0mole% SBN50 不同頻率的介電損失值對溫的變化圖....................................................................................77 圖4-10(a) codoped Ce Cr(0.5mole% ,0.25mole%)SBN50 不同頻率的介電常數對溫度的變化圖.......................................................78 圖4-10(b) codoped Ce Cr(0.5mole% ,0.25mole%)SBN50 不同頻率的介電損失值對溫度的變化圖............................................78 圖4-11(a) codoped Ce Cr(1.0mole% ,0.5mole%)SBN50 不同頻率的介電常數對溫度的變化圖....................................................79 圖4-11(b) codoped Ce Cr(1.0mole% ,0.5mole%)SBN50 不同頻率的介電損失值對溫度的變化圖................................................79 圖4-12(a) codoped Ce Cr(2.0mole% ,1.0mole%)SBN50 不同頻率的介電常數對溫度的變化圖....................................................80 圖4-12(b) codoped Ce Cr(2.0mole% ,1.0mole%)SBN50 不同頻率的介電損失值對溫度的變化圖................................................80 圖4-13 Sr0.5Ba0.5Nb2O6 添加0.5、1.0、1.5、2.0mole%Cr2O3 的XRD..................................................................................................................81 圖4-14 Sr0.5Ba0.5Nb2O6 添加0.5、1.0、1.5、2.0mole%CeO2 的XRD..................................................................................................................81 圖4-15 Sr0.5Ba0.5Nb2O6 共同添加CeO2 和Cr2O3 的XRD.....................82 圖4-16 undoped SBN50 在1000Hz 介電溫度圖做modified Vugmeister’s 理論fitting........................................................85 圖4-17 doped Cr0.5 SBN50 在1000Hz 介電溫度圖做modified Vugmeister’s 理論fitting........................................................85 圖4-18 doped Cr1.0 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論fitting........................................................86 圖4-19 doped Cr1.5 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論fitting...............................................86 圖4-20 doped Cr2.0 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論fitting................................................87 圖4-21 doped Ce0.5 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論fitting............................................87 圖4-22 doped Ce1.0 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論fitting................................................88 圖4-23 doped Ce1.5 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論fitting................................................88 圖4-24 doped Ce2.0 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論 fitting...............................................89 圖4-25 codoped Ce0.5 Cr0.25 SBN50 在1000Hz 介電溫度圖做modified Vugmeister's 理論 fitting.................................89 圖4-26 codoped Ce1.0 Cr0.5 SBN50 在1000Hz 介電溫度圖做modified Vugmeister’s 理論fitting.................................................90 圖4-27 codoped Ce2.0 Cr1.0 SBN50 在1000Hz 介電溫度圖做modified Vugmeister’s 理論 fitting.................................................90 圖4-28 undoped SBN50 dynamic scaling law fitting............................94 圖4-29 SBN50 dope cr0.5 dynamic scaling law fitting.........................94 圖4-30 SBN50 dope cr1.0 dynamic scaling law fitting.........................95 圖4-31 SBN50 dope cr1.5 dynamic scaling law fitting.........................95 圖4-32 SBN50 dope cr2.0 dynamic scaling law fitting.........................96 圖4-33 SBN50 dope ce0.5 dynamic scaling law fitting........................96 圖4-34 SBN50 dope ce1.0 dynamic scaling law fitting........................97 圖4-35 SBN50 dope ce1.5 dynamic scaling law fitting........................97 圖4-36 SBN50 dope ce2.0 dynamic scaling law fitting........................98 圖4-37 SBN50 dope ce0.5 cr0.25 dynamic scaling law fitting.............98 圖4-38 SBN50 dope ce1.0 cr0.5 dynamic scaling law fitting...............99 圖4-39 SBN50 dope ce1.0 cr0.5 dynamic scaling law fitting...............99 圖4-40 各成份利用dynamic scaling law fitting 所得θν 的比較圖............................................................................................100 圖4-41 undope SBN50 還未修正介電常數理論值和測量值對溫度比較圖頻率(a)200Hz (b)5KHz (c)100KHz (---虛線是測量值,一實線是理論值) .....................................................................105 圖4-42 undope SBN50 經修正介電常數理論值和測量值對溫度比較圖頻率(a)200Hz (b)5KHz (c)100KHz (---虛線是測量值,一實線是理論值) ..............................................................................106 圖4-43 SBN50 doped Cr2.0mole%經修正介電常數理論值和測量值對溫度比較圖頻率(a)200Hz (b)5KHz (c)100KHz (---虛線是測量值,一實線是理論值) .......................................................107 圖4-44 SBN50 doped Ce2.0mole%經修正介電常數理論值和測量值對溫度比較圖頻率(a)200Hz (b)5KHz (c)100KHz (---虛線是測量值,一實線是理論值) ......................................................108 圖4-45 SBN50 doped Ce2.0mole% Cr1.0 mole%經修正介電常數理論值和測量值對溫度比較圖頻率(a)200Hz (b)5KHz (c)100KHz(---虛線是測量值,一實線是理論值) ..............................109 圖4-46 undoped SBN50 在室溫下aging 一段時間不同頻率的介電常數對溫度的變化圖.................................................................112 圖4-47 undoped SBN50 在室溫(200Hz) 下aging 時間對介電的圖. ...............................................................................................112 圖4-48 從沒有aging 開始和經過無窮大aging 時間的介電常數差(實數部份)跟頻率的關係圖........................................................113 圖4-49 從沒有aging 開始和經過無窮大aging 時間的介電常數差(虛數部份)跟頻率的關係圖......................................................113 圖4-50 實心圓心為對應於介電實數部份β’空心圓心為對應於介電虛數部份β” .........................................................................114 圖4-51 實心圓心為對應於介電實數的relaxation timeτ’空心圓心為對應於介電虛數部份的relaxation timeτ” ................................114 表目錄 表2-1 不同組成的SBN 陶瓷之晶格常數與密度表............................8 表2-2 calcining後產生的相及1400℃燒結後的顯微結構發展….....34 表2-3 SBN添加不同成分的線性雙折射( linear birefringence, LB )的參數........................................................................................49 表4-1 利用Vugmeister’s 理論fitting 所得各成份在頻率1KHz 的l和T0...........................................................................................91 表4-2 利用dynamic scaling law fitting 所得各成份的Tc、a T 、0 ln f v............................................................................................101

    1. A.M. Glass, J. Appl. Phys. 40, 4699 (1969).
    2. P. B. Jamieson. S. S. Abrahams and J. L. Bernstein, “Ferroelectric
    Tungsten Bronze- Type Crystal Structure. I. Barium Strontium
    Niobate Ba0.27Sr0.75Nb2O5.78,”J. Chem. Phys., 48, 5048 (1968).
    3. VV. Shvartsman, J. Dec, S.Miga, et al. FERROELECTRICS 376
    197-204 (2008)
    4. L. E. Cross, “Relaxor ferroelectrics”, Ferroelectrics, 76, 241-67
    (1987).
    5. M. P. Trubelja, E. Ryba, D. K. Smith,” A study of Positional disorder
    in Strontium Barium Niobate,” J. Mater. Sci. 31, 1435-1443, (1996).
    6. N. S. Vandamme, A. E. Sutherland, L. Jones, K. Bridger, and S. R.
    Winzer, “Fabrication of Optically Transparent and Electrooptic
    Strontium Barium Niobate Ceramics,” J. Am. Ceram. Soc., 74 [8]
    1785 (1991).
    7. R. C. Baetzold," Calculations of Defect Properties Important in B,
    [48], 9, 5789-5796,
    8. J. R. Carruther and M. Grasso,” Phase Equilibria Relations in the
    Ternary System BaO-SrO-Nb2O5,” J. Electrochem. Soc., 117, 1426
    (1970)
    9. L. A. Bursill and Peng Ju Lin,” Chaotic States Observed in Strontium
    Barium Niobate,” Philosophical Magazine B, 54[2] 157-170 (1986).
    10.J. M. Herbert, “Ceramic Dielectrics and Capacitors,“ New York,
    pp.202-218 (1985).
    11.G. C. Jain, “Properties of Electrical Engineering Materials,“ (1966).
    12.吳朗, “電子陶瓷(介電陶瓷)“,全欣出版社(1994)p.69
    13.國立成功大學資源工程研究所碩士論文“組成變化對X8R 鈦酸鋇
    介電陶瓷之介電性質及顯微結構的影響之研究“朱冠宇,2006
    14.S. B. Deshpande, H. S. Potdar, P. D. Godbole, and S. K. Date,”
    Preparation and Ferroelectric Properties of SBN: 50,” J. Am. Ceram.
    Soc., 75[9],2581 (1992).
    15.S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso,” Preparation of
    Strontium Barium Niobate by Sol-Gel Method,” J. Am. Ceram. Soc.,75[6] 1697-1700 (1992).
    16.李文景,博士論文,國立成功大學,1997。
    17.Junichi Takahashi, Shiro Nishiwaki and Kohei Kodaira,” Sintering and
    Microstructure of Sr0.6Ba0.4Nb2O6 Ceramics,”363-370, in Ceramic
    Transactions vol. 41: Grain Boundary and Interfacial Phenomena in
    Electronic Ceramics, edited by Lionel M. Levinson and Shin-ichi
    hirano, American Ceramic Society, Columbus, OH, 1994.
    18.Han-Young Lee and R. Freer,” The Mechanism of Abnormal Grain
    Growth in Sr0.6Ba0.4Nb2O6 Ceramics,” J. Appl. Phys., 81[1]
    376-382 (1997).
    19.Han-Young Lee and R. Freer,” Abnormal Grain Growth and
    Liquid-Phase Sintering in Sr0.6Ba0.4Nb2O6 (SBN60) Ceramics,” J.
    Mater. Sci., 33, 1703-1708(1998).
    20.T. Granzow and Th. Woike,"Polarization-Based Adjustable Memory
    Behavior in Relaxor Ferroelectrics,” Phys. Rev. Lett., 89, 127601-1~4,
    (2002).
    21.P. Lehnen and W. Kleemann,” Ferroelectric Nanodomains in the
    Uniaxial Relaxor System Sr0.61-XBa0.39Nb2O6: CeX
    3+,”Phys. Rev.
    B, 64, 224109 (2001).
    22.J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc and R.
    Pankrath,” Random-field Ising-type Transition of Pure and Doped
    SBN from the Relaxor into the Ferroelectric State,” Europhys. Lett.,
    55(6) 781-787 (2001).
    23.T. Granzow, U. Dorfler, and Th. Woike,” Local Electric-Field-Driven
    Repoling Reflected in the Ferroelectric Polarization of Ce-Doped
    Sr0.61Ba0.39Nb2O6,”Appl. Phys. Lett., 80, 3, 470-472, (2002)
    24.Dwight Viehland, Z. Xu, and Weng-Hsing Huang, “Structure-Property
    Relationships in Strontium Barium Niobate, I. Needle-Like Nanopolar
    Domains and the Metastably-Locked Incommensurate Structure,”
    Philosophical Magazine A, 71[2] 205-217 (1995)
    25.P. Lehnen, E. Beckers, W. Kleemann, Th. Woike, and R. Pankrath,”
    Ferroelectric Domains in the Uniaxial Relaxor System SBN: Ce, Cr
    and Co,” Ferroelectrics, 253, 11-19, (2001).
    26.T. Granzow, U. Dorfler, Th. Woike, M. Wohlecke, R. Pankrath, M.
    Imlau, and W. Kleemann,” Evidence of Random Electric Fields in the
    Relaxor-Ferroelectric Sr0.61Ba0.39Nb2O6,” Europhys. Lett., 57 (4),597-603, (2002).
    27.M D Glinchuk and V A Stephanovich,” Random Fields and Their
    Influence on the Phase Transition in Disordered Ferroelectrics,” J.
    Phys. : Condens. Mater 6, 6317-6327 (1994).
    28.A. A. BOKOV, Z.-G. YE, ”Recent progress in relaxor
    ferroelectricswith perovskite structure, ”JOURNAL OF MATERIALS
    SCIENCE 41 (2006) 31–52
    29.R. E. COHEN, Nature 358 (1992) 136.
    30.S . VAKHRUSHEV, S . ZHUKOV, G. FETISOV and
    V.CHERNYSHOV, J. Phys.: Condens. Matter 6 (1994) 4021.
    31.P. BONNEAU, P. GARNIER, E. HUSSON and A. MORELL,Mat.
    Res. Bull. 24 (1989) 201.
    32.R. BLINC, V. LAGUTA and B. ZALAR, Phys. Rev. Lett. 91(2003)
    247601.
    33.P. BONNEAU, P. GARNIER, G. CALVARIN, E. HUSSON,J . R.
    GAVARRI and A. MORELL, J. Solid State Chem.91 (1991) 350.
    34.K. FUJISHIRO, T. IWASE, Y. UESU, Y. YAMADA, B.DKHIL, J .
    -M. KIAT, S . MORI and N. YAMAMOTO, J.Phys. Soc. Jpn. 69
    (2000) 2331.
    35.Y. UESU, Y. YAMADA, K. FUJISHIRO, H. TAZAWA,S .
    ENOKIDO, J . -M. KIAT and B. DKHIL, Ferroelectrics 217(1998)
    319.
    36.S . B. VAKHRUSHEV, B. E. KVYATKOVSKY, A.
    A.NABEREZNOV, N. M. OKUNEVA and B. P.
    TOPERVERG,Ferroelectrics 90 (1989) 173.
    37.A. NABEREZNOV, S . VAKHRUSHEV, B. DORNER,D.
    STRAUCH and H. MOUDDEN, Eur. Phys. J. 11 (1999)13.
    38.K. HIROTA, Z. -G. YE, S . WAKIMOTO, P. M. GEHRING and G.
    SHIRANE, Phys. Rev. B 65 (2002) 104105.
    39.S . VAKHRUSHEV, A. NABEREZNOV, S . K. SINHA, Y.P. FENG
    and T. EGAMI, J. Phys. Chem. Solids 57 (1996) 1517.
    40.G. XU, G. SHIRANE, J . R. D. COPLEY and P. M.GEHRING, Phys.
    Rev. B 69 (2004) 064112.
    41.M. YOSHIDA, S . MORI, N. YAMAMOTO, Y. UESU and J . M.
    KIAT, Ferroelectrics 217 (1998) 327.
    42.N. TAKESUE, Y. FUJII and H. YOU, Phys. Rev. B 64 (2001)
    184112.
    43.D. LA-ORAUTTAPONG, J . TOULOUSE, J . L. ROBERTSON andZ. -G. YE, ibid. 64 (2001) 212101.
    44.M. D. GLINCHUK and R. FARHI , J. Phys.: Condens. Matter 8
    (1996) 6985.
    45.A. A. BOKOV, JEPT 84 (1997) 994.
    46.P. N. TIMONIN, Ferroelectrics 199 (1997) 69.
    47.A. A. BOKOV, Phys. Solid State 36 (1994) 19; Ferroelectrics
    190(1997) 197.
    48.V. WESTPHAL, W. KLEEMANN and M. D. GLINCHUK,Phys. Rev.
    Lett. 68 (1992) 847.
    49.V. M. ISHCHUK, Ferroelectrics 255 (2001) 73.
    50.N. DE MATHAN, E. HUSSON, G. CALVARIN, J . R.GAVARRI , A.
    W. HEWAT and A. MORELL, J. Phys. Condens.Matter 3 (1991)
    8159.
    51.W. KLEEMANN, Int. J. Mod. Phys. B 7 (1993) 2469.
    52.Y. IMRY and S . -K. MA, Phys. Rev. Lett. 35 (1975) 1399.
    53.G. BURNS and F. H. DACOL, Sol. Stat. Commun. 48 (1983) 853.
    54.Tsang-Tse Fang, Edin Chen and Wen-Jiung Lee,” On the
    Discontinuous Grain Growth of SrXBa1-XNb2O6 Ceramics” J. Europ.
    Ceram., 20, 527-530 (2000).
    55.G. Burns and F. H. Dacol, Phys. Rev. B 28, 2527(1983)
    56.B. E. Vugmeister, ” Polarization dynamics and formation of polar
    nanoregions in relaxor ferroelectrics”Phys. Rev. B 73,174117(2006)
    57.B. E. Vugmeister and H. Rabitz, Phys. Rev. B 61, 14448 (2000)
    58.Tsang-Tse Fang_ and Han-Yang Chung, APPLIED PHYSICS
    LETTERS 94, 092905 (2009)
    59.J. Dec ; W. Kleemann ; T. ukasiewicz Phase Transitions,
    Vol. 79, Nos. 6–7, June–July 2006, 505–511
    60.H. Vogel, Phys. Z. 22 645 (1921).
    61.S. Miga,1,2 J. Dec,1,2 W. Kleemann,1 and R. Pankrath3 PHYSICAL
    REVIEW B 70, 134108 (2004)
    62.E. Buixaderas, M. Savinov, M. Kempa, S. Veljko, S. Kamba, J.
    Petzelt, R.Pankrath, and S. Kapphan, J. Phys.: Condens. Matter 17,
    653 _2005_.

    下載圖示 校內:2011-08-17公開
    校外:2011-08-17公開
    QR CODE