簡易檢索 / 詳目顯示

研究生: 陳宏宇
Chen, Hong-Yu
論文名稱: 整合大數據與資料探勘以提昇WLAN檢測生產線效率之探討
Integrate big data and data mining to improve the efficiency of WLAN inspection production line
指導教授: 呂執中
Lyu, Jr-Jung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 大數據關聯規則決策樹無線通訊產業
外文關鍵詞: Big data, Association rules, Decision tree, Wireless communications industry
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線通訊產業WLAN在全球化競爭下,面臨高品質低成本之要求,如何在維持品質甚至提昇品質之同時提降低成本,成為急需解決之問題。無線通訊產業WLAN之生產過程,除SMT、 DIP生產製程及組裝製程外,尚包括大量的檢測,通常以全檢來確保產品出廠品質,尚包括大量的檢測,通常以全檢來確保產品出廠品質,若能減少不必要的檢查過程和資源,則有助於提昇競爭力,本研究發展大數據分析之應用架構,以改善WLAN之生產及檢測過程。
    本研究以改善製程檢測問題進行探討,設定產品為訂貨生產進行模式下建構大數據探勘架構,透過資料面的探索與挖掘來協助工程師更有效率找出的檢測站之間關聯因素。以台灣某無線通訊產業WLAN之生產線製程檢測資料進行架構測試,在維持品質之前提下,本研究以關聯規則方法找出不同檢測項目間之關聯性,減少所需檢測次數;接著再以決策樹分析找出最適之可控因子水準(如各製程及檢測站之溫度、濕度等)以改善品質。最後,以實證資料進行規則之驗證。步驟包括蒐集檢測缺陷、檢測項目與機台製程參數等資訊,進行資料預處理工作,第一部份採用動態式關聯規則進行資料分析,透過設定門檻値篩選規則,萃取檢測項目之間相互影響因素,第二部份以動態式決策樹分析影響檢測效率之原因,找出較佳參數配置並提供給工程師作為參考依據。萃取檢測站之間相互影響因素。以個案公司之實證資料並採用本研究提出之大數據分析架構,針對60個檢測項目,以6223筆生產資料萃取出檢測站間10筆關聯規則及5棵決策樹,再以4526筆生產資料進行驗證。結果顯示,在驗證的4256台產品中,可減少16.2%的檢測次數,決策樹所建議之可控因子水準為環境的溫度與濕度,改善濕度與溫度設置能夠在不增加成本情況下提升品質。由實證結果可得知,本研究所提出之大數據分析應用架構具可行性,可為實務所應用,且降低時間成本與設備成本,建立一套以無線通訊產業為例之製程檢測效率提昇的模型架構,以及未來研究方向以整合機器學習或其他模型更進一步發展。

    Wireless communication industry WLAN is under a very competitive market. To reduce the cost while maintaining quality is always a critical issue in this industry. In addition to the SMT, DIP production process and assembly process, the critical production processes of WLAN industry also include a large number of inspections. While inspection is always a necessary evil, there is a strong need to reduce the unnecessary inspection processes and resources to improve the competitiveness.
    This work develops a framework to apply big data analytics to improve WLAN production and inspection processes. A case company is selected and a data-warehouse is established for a specific lot of products. After the data pre-processing work, the relationships among the detection stations and the detection results could be found. Various meta-models are used, which including association rule method to find the correlation between different test items and to reduce the number of required test; the decision tree to find the optimal controllable factor, and other potential methods. Finally, the developed rules are further verified by empirical data.
    In this specific case, there are 6223 pieces of production data and 60 test items, where 10 pieces of association rules and 5 decision trees from the test stations are extracted. Once the rules from the models are developed, 4526pieces of data is used to validate our findings. It is concluded from this empirical study that the number of detections could be reduced by around 16.2%, a huge number of cost saving. It is also found out that the critical control factors, recommended by the decision tree, are temperature and humidity. The proposed big data application framework is therefore feasible in this case and machine learning or other models could be further extended, which is our future research direction.

    摘要 i Abstract ii 誌謝 ix 目錄 x 表目錄 xii 圖目錄 xiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究範圍與限制 5 1.5 研究流程與架構 5 第二章 文獻探討 7 2.1 無線通訊產業 7 2.1.1 WLAN量測簡介 13 2.1.2無線通訊產品製程介紹 19 2.1.3 SMT缺陷種類 21 2.2大數據之定義與特徵 25 2.2.1 大數據分析與儲存技術 27 2.2.2 大數據分析與資料探勘於效率提昇之應用 29 2.3 機器學習介紹 33 2.3.1 資料探勘流程之建構 36 2.3.2資料視覺化 38 2.4 文獻小結 41 第三章 研究方法 42 3.1 研究架構 42 3.2 製程檢測問題定義 44 3.2.1資料選擇與蒐集 45 3.2.2 資料預處理 46 3.2.3 目標變數選擇與資料化約 49 3.3 模型建立與比較(決策樹、邏吉斯迴歸、類神經網路) 50 3.3.1 關聯規則 51 3.3.2決策樹 55 3.3.3 邏吉斯迴歸 59 3.3.4 類神經網路 60 3.4 評估準則 63 3.5 結果解釋與修正 65 第四章 實證研究與結果分析 66 4.1 個案公司介紹與製程流程定義 66 4.2 資料選擇與蒐集 69 4.3 資料預處理 72 4.4 實證分析 74 4.4.1動態式關聯規則分析 74 4.4.2模型配適度比較(決策樹、邏吉斯迴歸、類神經網路) 77 4.4.3動態式決策樹 78 4.5 管理意涵 94 第五章 結論與建議 96 5.1 研究結論 96 5.2 未來展望 97 參考文獻 99 英文文獻: 99 中文文獻: 105 網站資料: 106

    英文文獻:
    Abadi, D. J. (2009). Data Management in the Cloud: Limitations and Opportunities. IEEE Data Eng. Bull, 32(1), 3-12.
    Acharjya, D., & Ahmed, K. P. (2016). A Survey on Big Data Analytics: Challenges, Open Research Issues and Tools. International Journal of Advanced Computer Science and Applications, , 7(2), 511-518.
    Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Paper presented at the Acm Sigmod Record, DC, USA.
    Alonso, F., Martínez, L., Pérez, A., & Valente, J. P. (2012). Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned. Expert Systems with Applications, 39(8), 7524-7535.
    Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2015). Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79-80, 3-15.
    Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer relationship management. Hoboken,New Jersey: John Wiley & Sons, Inc.
    Braha, D., & Shmilovici, A. (2003). On the use of decision tree induction for discovery of interactions in a photolithographic process. IEEE transactions on semiconductor manufacturing, 16(4), 644-652.
    Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization: using vision to think. San Francisco, CA, USA: Morgan Kaufmann.
    Casali, A., & Ernst, C. (2012). Discovering correlated parameters in semiconductor manufacturing processes: A data mining approach. IEEE transactions on semiconductor manufacturing, 25(1), 118-127.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,, & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. New York, USA: SPSS.
    Chen, A., & Hong, A. (2010). Sample-efficient regression trees (SERT) for semiconductor yield loss analysis. IEEE transactions on semiconductor manufacturing, 23(3), 358-369.
    Chen, H.-M., Chang, K.-C., & Lin, T.-H. (2016). A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs. Automation in Construction, 71, 34-48.
    Chen, Y.-J., Fan, C.-Y., & Chang, K.-H. (2016). Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing. Computers & Industrial Engineering, 99, 465-473.
    Chen, Y.-J., Lin, T.-H., Chang, K.-H., & Chien, C.-F. (2013). Feature extraction for defect classification and yield enhancement in color filter and micro-lens manufacturing: An empirical study. Journal of Industrial and Production Engineering, 30(8), 510-517.
    Chi, E. H.-h. (2000). A taxonomy of visualization techniques using the data state reference model. Paper presented at the IEEE Symposium on Information Vizualization 2000, DC,USA.
    Chien, C.-F., Chang, K.-H., & Wang, W.-C. (2013). An empirical study of design-of-experiment data mining for yield-loss diagnosis for semiconductor manufacturing. Journal of Intelligent Manufacturing, 25(5), 961-972.
    Chien, C.-F., & Hsu, C.-Y. (2014). Data mining for optimizing IC feature designs to enhance overall wafer effectiveness. IEEE transactions on semiconductor manufacturing, 27(1), 71-82.
    Chien, C.-F., Hsu, C.-Y., & Chen, P.-N. (2012). Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing Journal, 25(3), 367-388.
    Chien, C.-F., Lin, S., & Cheng, J.-C. (2008). Construct Fuzzy Decision Tree for Mining Interrelated Semiconductor Manufacturing Data for Yield Enhancement. Journal of Quality, 15(3), 193-210.
    Chien, C.-F., Wang, W.-C., & Cheng, J.-C. (2007). Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications, 33(1), 192-198.
    Chu, P.-C., Chen, C.-C., & Chien, C.-F. (2017). Analyzing TFT-LCD array big data for yield enhancement and an empirical study of TFT -LCD manufacturing in Taiwan. International Journal of Industrial Engineering: Theory, Applications and Practice, 23(5), 318-331.
    Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD skills: new analysis practices for big data. Proceedings of the VLDB Endowment, 2(2), 1481-1492.
    Cook, K. A., & Thomas, J. J. (2005). Illuminating the path:The research and development agenda for visual analytics. CA,USA: IEEE Computer Society Press
    Da Cunha, C., Agard, B., & Kusiak, A. (2006). Data mining for improvement of product quality. International Journal of Production Research, 44(18-19), 4027-4041.
    Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
    Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. Paper presented at the ACM SIGOPS operating systems review, Bolton Landing, New York, USA.
    Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
    Hecht, R., & Jablonski, S. (2011). Nosql evaluation. Paper presented at the International conference on cloud and service computing, Hong Kong, China.
    Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel and Distributed Computing, 74(7), 2561-2573.
    Kamsu-Foguem, B., Tchuenté-Foguem, G., Allart, L., Zennir, Y., Vilhelm, C., Mehdaoui, H., Zitouni, D., Hubert, H., Lemdani, M., & Ravaux, P. (2012). User-centered visual analysis using a hybrid reasoning architecture for intensive care units. Decision Support Systems, 54(1), 496-509.
    Kashkoush, M., & ElMaraghy, H. (2015). An integer programming model for discovering associations between manufacturing system capabilities and product features. 28(4), 1031-1044.
    Keim, D., Qu, H., & Ma, K.-L. (2013). Big-data visualization. IEEE Computer Graphics and Applications, 33(4), 20-21.
    Keim, D. A. (2002). Information visualization and visual data mining. IEEE transactions on Visualization and Computer Graphics, 8(1), 1-8.
    Keim, D. A., Kohlhammer, J., Ellis, G., & Mansmann, F. (2010). Mastering the information age-solving problems with visual analytics. Goslar, Germany: Published by the Eurographics Association.
    Kittler, R., & Wang, W. (2000). Data mining for yield improvements. Paper presented at the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Tempe, Arizona.
    Kudyba, S. (2014). Big data, mining, and analytics: components of strategic decision Making. ‎Boca Raton: Auerbach Pub.
    Kung, S.-Y. (2015). Visualization of big data. Paper presented at the Cognitive Informatics & Cognitive Computing (ICCI* CC), Beijing, China.
    Manovich, L. (2011). Trending: The Promises and the Challenges of Big Social Data Debates in the digital humanities, 2, 465-475.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity.
    Nour E. Oweis, Suhail S. Owais, Waseem George, & Snášel, M. G. S. a. V. (2015). Intelligent Data Analysis and Applications. Berlin, Germany: Springer.
    Pantazos, K. (2013). Custom visualization without real programming. Copenhagen: University of Copenhagen, Software and Systems.
    Sarkar, B. K. (2017). Big data for secure healthcare system: a conceptual design. Complex & Intelligent Systems, 3(2), 133-151.
    Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy, R., & Liu, H. (2010). Data warehousing and analytics infrastructure at facebook. Paper presented at the 2010 ACM SIGMOD International Conference on Management of data, Indiana,USA
    Tsai, T.-N. (2012). Development of a soldering quality classifier system using a hybrid data mining approach. Expert Systems with Applications, 39(5), 5727-5738.
    Tu, K. K.-W., Lee, J. C.-s., & Lu, H. H.-S. (2009). A novel statistical method for automatically partitioning tools according to engineers' tolerance control in process improvement. IEEE transactions on semiconductor manufacturing, 22(3), 373-380.
    Van Wijk, J. J. (2005). The value of visualization. Paper presented at the VIS 05. IEEE Visualization, Minneapolis, MN, USA.
    Wang, Z., Shao, X., Zhang, G., & Zhu, H. (2005). Integration of Variable Precision Rough Set and Fuzzy Clustering: An Application to Knowledge Acquisition for Manufacturing Process Planning Paper presented at the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing.
    Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107.

    中文文獻:
    簡禎富、許嘉裕。(2014)。資料挖礦與大數據分析:前程文化。
    陳景祥。(2014)。R軟體:應用統計方法:東華。
    行政院。(2015)。行政院生產力4.0發展方案。
    簡禎富、林國義、許鉅秉、吳政鴻。(2016)。台灣生產與作業管理之相關期刊文
    獻回顧與前瞻:從工業3.0到工業3.5。管理學報。33(1),87-103。
    余承叡、盧冠宇、吳維文、丁士翔。(2016)。邁向工業4.0-製造業的大數據
    分析應用實例。電工通訊季刊。68-77。
    李仁鐘。(2016)。應用R語言資料分析:松崗。

    網站資料:
    國際數據資訊 https://www.idc.com
    IEK 產業情報局 http://ieknet.iek.org.tw
    中華民國電子零件認證委員會 http://www.cteccb.org.tw
    台灣表面黏著科技股份有限公司 http://www.tsmt.com/default.asp
    IBM https://www.ibm.com/news/tw
    電子製造(工作狂人) https://www.researchmfg.com
    Apache Hadoop官方網站 http://hadoop.apache.org

    無法下載圖示 校內:2023-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE