| 研究生: |
余飛鵬 Yu, Fei-Peng |
|---|---|
| 論文名稱: |
鋰離子吸附劑之製備及吸附行為之研究 Preparation and characterization of lithium adsorbent |
| 指導教授: |
蔡敏行
Tsai, Min-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | λ-MnO2 吸附劑 、吸附 、鋰 |
| 外文關鍵詞: | adsorptive, λ-MnO2 adsorbent, Lithium |
| 相關次數: | 點閱:87 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
隨著科技的發展,人類對物質的需求也就越來越高,各種礦物以及能源的供需漸漸受世人所重視。由於在通訊產品的帶動下,鋰金屬之需求量大增,由1990年的30萬磅增加為1999年的900萬磅,海水中具大量的鋰資源,如可加以有效利用將可成為提供鋰資源的重要管道,鋰錳尖晶石酸洗後製備的λ-MnO2具吸附鋰離子的特性,因此本研究針對鋰錳尖晶石合成條件與以過硫酸銨酸洗為主,分別探討酸洗、吸附與相關吸附參數。
由實驗結果可知,以Li2CO3與MnCO3為起始原料,Li/Mn莫耳比在0.5與0.6之間,煆燒溫度在600 ℃以上,以每分鐘5 ℃升溫速率,持溫4 小時可製得純相之鋰錳尖晶石,此時比表面積(600℃/0.5)為0.06 m2/g ,粒徑為22.64 A。。
煆燒溫度在600 ℃以上,Li/Mn莫耳比低於0.5會有錳氧化合物殘留,Li/Mn莫耳比高於0.6則生成Li2MnO3。
溫度低於600 ℃或持溫時間不足4 小時的樣品,皆含許多未分解之MnCO3,且MnCO3的分解會促進Li2CO3提前分解。
將Li/Mn莫耳比=0.5、煆燒溫度為700 ℃、持溫4 小時之鋰錳尖晶石,以酸洗溫度70 ℃、酸洗時間40 分鐘、濃度0.5M以上之(NH4)2S2O8所製備吸附劑之吸附效果最佳,吸附量為31.5mg/g之,鹽酸與過硫酸氨酸洗製備之吸附劑的最佳吸附量相近,但鹽酸會將錳洗出,過硫酸銨則否,因此酸洗後兩者所得吸附劑重量不同,酸洗前後可發現XRD繞射峰有些微的偏移。
本反應之吸附熱為-10.15kcal/mol,屬化學吸附,且Na離子的存在對吸附影響不大。
Abstract
With technological development, people’s demands of material become higher and the supply of mineral and energy are respected by human as well. The demanding of lithium mental has been increases a lot under the popularity of communication products. Such requirements in 1990 is 300 thousands and 90 million in 1999. There are a plenty of lithium compound in seawater. If we can successfully and effectively extract lithium from seawater, seawater would become an important way to gain lithium. λ-MnO2 which treat with acid from LiMn2O4 can uptake lithium. As a result our study observes the conditions of synthesis, acid treatment by (NH4)2S2O8, and adsorption coefficients.
Based on the experiment, the LiMn2O4 sample prepared by mixing Li2CO3 and MnCO3 with the mol ratio between 0.5~0.6 above 600℃ for 4 hours and the increasing rate 5℃/min can produce pure LiMn2O4. It’s specific area is 0.06m2/g and particle size is 22.64 A。.
We obtain manganese oxides with temperature above 600℃ and mole ratio below 0.5. When mole ratio is above 0.6 we will obtain Li2MnO3.
A great amount of manganese oxide will remain if the temperature is below 600℃and the time of duration is less than 4 hours. MnCO3 decomposing will leads Li2CO3 to decompose at lower temperature in advance.
LiMn2O4 which is heated at 700℃ with mole ratio 0.5 for 4 hours and 0.5M (NH4)2S2O8 at 70℃ for 40 minutes will produce optimum adsorbent. Each gram of adsorbent can uptake 31.5mg lithium. The amount of uptaked lithium are the same as that which is treated with HCl and (NH4)2S2O8.However, using HCl results in a relatively high Mn dissolution, but using (NH4)2S2O8 doesn’t obtain. We get less amount of adsorbent after using HCl. Besides we can observe that peak is shifting slightly before and after acid treatment.
The enthalpy for the reaction is -10.15Kcal/mol, which belongs to chemisorption. The amount of lithium absorption wouldn’t be affected by sodium ion.
參考文獻
1.Robare, T. J., Witters, J. J., Light Metals 1991, edited by Rooy, E. L., The Minerals, Metals & Materials Soiety, 1990, pp.1223~1227。
2.楊家諭,工業材料117期,85年9月,63~67頁。
3.Zhuang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M., Inoue, K., Hydrometallurgy, 47(2~3), 1998, pp. 259~271。
4.Hartley, J. N., Gore, B.F., Young, J.R., Energy, 3, 1978, pp. 337~346。
5.Crozier, R.D., Mining Magazine, February 1986, pp. 148 ~ 152。
6.Eckhartt, D., Journal of fusion Energy 14(4), 1995, pp.329~341。
7.Encyclopedia of Inorganic Chemistry, edited by King, R.B., Wiley, 1994, pp.448~476。
8.Kaplan, D., Irrael, J. Chen., 1, 1963, pp.115~120。
9.Pelly, I., J. Appl. Chem. Biotechnol., 28, 1978, pp.469~474。
10.Edwards, L.V., Frederick, N.D., Zuric, P.P., Lithium, Current Applications in Science, Medicine, and Technology, Wiley, 1985, pp.47~59。
11.Sachleben, R.B., Moyer, B.A., Driver, J.L., Separation Science and Technology, 30(7~9), 1995, pp.1157~1168。
12.Bukowsky, H., Uhlemann, E., ibid, 28(6), 1995, pp.1357~1360。
13.Kinugasa, T., Ono, Y., Kawamura, Y., Watanabe, K., Takeachi, H., Journal of Chemical Engineering of Japan, 28(6), 1995, pp.673~678。
14.Abe, M., Lithium Current Applications in Science, Medicine and Technology, Wiley, 1985, pp.1~23。
15.Chitrakar, R., Abe., M., Solvent Extraction and Ion Exchange, 7(4), 1989, pp.721~733。
16.Chitrakar, R., Tsuji, M., Abe, M., 日本海水學會誌, 44(4), 1990, pp.267~271。
17.Ooi, k., Abe, M., Solvent Extraction and Ion Exchange, 14(2), 1996, pp1137~1148。
18.Bauman, W.C., Burba, J.L., Lee, J.M., Lithium Current Applications in Science, Medicine, and Technology, Wiley, 1985, pp.29~34。
19.Ersoz, M., Separation Science and Technology, 30(18), 1995, pp.3523~3533。
20.北村孝雄, 和田英男, 日本海水學會誌, 32(2), 1978, pp.78~81。
21.Abe. M., Uno, K., Separation Science and Technology, 14(4), 1979, pp.355~366。
22.康文成,“自模擬海水中提鋰之吸附劑製備及吸附速率研究”,國立成功大學碩士論文,1982。
23.櫸田榮一,金鐘和,駒澤勳,化學工學論文集,15(3),1989,pp.504~510。
24.Ooi, K., Miyai, Y., Katoh, S., Solvent Extraction and Ion Exchange, 5(3), 1987, pp.561~572。
25.Ooi, K., Miyai, Y., Katah, S., Marda, H., Abe, M., Bulletin of Chemical Society of Japan, 61, 1988, pp.407~471。
26.Miyai, Y., Ooi, K., Sakakibara, J., Katoh, S., 日本海水學會誌, 45(4), 1991, pp.193~198。
27.蘇怡帆,“尖晶石型態鋰吸附劑之製備及其吸附行為研究”,國立成功大學化學工程研究所碩士論文,1998。
28.Hunter, J., J. Solid. State. Chem., 39, 1981, p.p142~147。
29.Feng Q., Yoshitaka M., Kanoh H., Ooi k., Langmuir, 1992, p.1861~1867。
30.Gao, Y., Dahn, J.R., ibid, 143, 1996, P.100。
31.Askeland, Donald R.著,蔡丕樁等譯“材料科學與工程”第三版,全華科技圖書股份有限公司出版,PP.77~110
32.何欣戎,“鋰錳氧及鎳鐵氧超微粉體之製備”,國立成功大學化學工程研究所碩士論文,2000。
33.Biernacki, L., Pokrzywnicki, S., Journal of Thermal Analysis and Calorimetry, 1999, 55, pp227~232。
34.加納源太郎、武內康正、西村雄次、古市幸久、高島正之,資源處理技術, 1995, l42(2), pp99-103。
35.Ogino, H., Oi, T., Separation Science And Technology, 1996, p.1215~p.1231。
36.Ooi, K., Miyai, Y.,Katoh, S., Solvent Extraction and Ion Exchange, 1987,5(3), pp561-572。