| 研究生: |
廖大為 Liao, Ta-Wei |
|---|---|
| 論文名稱: |
四軸飛行器葉片最佳化之平台設計 Development of Design Platform for Quadcopter Blade Optimization |
| 指導教授: |
黃才烱
Huang, T.J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 四軸飛行器 、螺旋槳葉片效率 、俯仰角角度 、翼型設計 |
| 外文關鍵詞: | Quadcopter, Propeller Blade Efficiency, Pitch Angle, Airfoil Design |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
四軸飛行器在近幾年的發展正在急遽成長,依照美國聯邦航空總署(FAA)的估計,於2016年美國境內大約共有110萬架業餘四軸飛行器,並預估在2020年達到340萬,而商用四軸飛行器於2016年則有4.2萬架,並預估於2020年達到42萬架。除了四軸飛行器現今不斷成長的市場外,其在未來應用上的前景一樣十分樂觀。但受限於續航力低下此一特性,使許多可預見的發展無法被實現,因此如何提升四軸飛行器的飛行時間是目前各方努力的焦點。在克服此一限制後,四軸飛行器便能在各個不同的領域廣泛被使用,是一項值得被投資的新興科技。
本研究找出測量葉片效率所需的各種參數,以此為基準建立葉片的測試平台,使設計者能夠簡單方便地測試所設計之葉片的表現性能。所需量測的參數分別為推力、風速、扭矩及轉速,透過量測旋轉中葉片的這些參數便能計算此運轉狀態下的葉片效率。本研究同時也探討影響四軸飛行器葉片性能表現的各種因素,並以俯仰角角度為觀察的變因設計,能改變此角度的機構安裝於平台上提供測量時作為另一個變數。
本研究以所設計之測試平台實際對葉片進行量測,實驗共分為推力量測實驗以及扭矩量測實驗,實驗後計算並討論此效率隨轉速及俯仰角角度改變的趨勢是否合乎理論,並比較角度不改變的情況下與改變至最佳角度下效率的變化,以評估俯仰角角度改變的影響程度及其價值。透過實驗發現,隨轉速及角度改變其效率變化的趨勢與理論相符,且某些轉速下其最佳角度下的效率比起原始角度有著一定的提升,以及一定的貢獻價值。
A rapid growth on quadcopter is taking place in these past few years. According to an estimation from Federal Aviation Administration(FAA), there was about 1.1million hobbyist quadcopters in 2016, and is expected to reach 3.4 million by 2020. On the other hand, commercial quadcopter is estimated up from 42 thousand in 2016 to about 420 thousand by 2020. Besides the rapid growth of the quadcopter market, the development on quadcopter`s future applications are also promising. However, due to the lack of endurance, most of the applications become unachievable. Therefore, developers are dedicated on rising the flight time of quadcopter. With this issue being overcame, the future of quadcopter may be limitless.
This study searches for the parameters that are needed for estimating the efficiency of a quadcopter, then develop a platform that measures these parameters’ data. The parameter needed to be measured are thrust, induced velocity, torque and rotor speed. Meanwhile, any factor that influences the efficiency of the quadcopter has been investigated, and the pitch angle of propeller blade became the main focus of those factors. Thus, a mechanism that changes the pitch angle was integrated to the platform which was developed.
In this study, an experiment has been carried out using the developed platform on a propeller from commercial quadcopter. The experiment has been separated to thrust measurement and torque measurement. After acquiring those data, an analysis has been made to see if the measuring data are reasonable and compare the difference of efficiency between optimum pitch angle and original pitch angle. This experiment proved that the efficiency had received a certain degree of improvement, and is worth optimizing.
Abbott, I. H., Von Doenhoff, A. E., and Stivers L. S. Jr. “Summary of Airfoil Data.” NACA, 1945.
Bouadi, H., Cunha, S. S., Drouin, A., Antonio, F., and Mora-Camino, C. “Adaptive Sliding Mode Control for Quadrotor Attitude Stabilization and Altitude Tracking.” IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011.
Brandt, J. B. and Selig, M. S. “Propeller Performance Data at Low Reynolds Numbers.” 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.
Cutler, M., Ure, N.K., Michini, B. and How , J. P. “Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors.” AIAA Guidance, Navigation, and Control Conference, 2011.
Dikmen, I. C., Arisoy, A. and Temeltas, H. “Attitude Control of a Quadrotor.” 4th International Conference on Recent Advances in Space Technologies, 2009.
Driessens, S. and Pounds, P. E. I. “Towards a More Efficient Quadrotor Configuration.” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.
eFatigue. “Stress Concentration Factor Finder.” from https://www.efatigue.com/constantamplitude/stressconcentration/#a.
Guenard, N., Hamel, T. and Eck, L. “Control Laws for the Tele Operation of an Unmanned Aerial Vehicle known as an X4-flyer.” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.
Gupte, S., Mohandas, P. I. T., and Conrad, J. M. “A Survey of Quadrotor Unmanned Aerial Vehicles.” Proceedings of IEEE Southeastcon, 2012.
McLemore, H. C. and Cannon, M. D. “Aerodynamic Investigation of a Four-Blade Propeller Operating Through an Angle-of-Attack Range from 0o to 180o.” National Advisory Committee for Aeronautics, 1954.
Merchant, M. P. and Miller, L. S. “Propeller Performance Measurement for Low Reynolds Number UAV Applications.” 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
Norouzi Ghazbi, S., and Aghli, Y., Alimohammadi, M., and Akbari, A. A. “Quadrotors Unmanned Aerial Vehicles: a Review.” International Journal on Smart Sensing & Intelligent Systems, vol. 9, pp. 309-333, 2016.
Pilkey, W. D. “Peterson's Stress Concentration Factors.” 2008.
Pounds, P., Mahony, R., Gresham, J., Corke, P. and Roberts, J. M. “Towards Dynamically-Favourable Quad-Rotor Aerial Robots.” Proceedings of the 2004 Australasian Conference on Robotics & Automation, 2004.
Prospero, M. “Best Drones 2018.” from https://www.tomsguide.com/us/best-drones,review-2412.html, 2018.
Prouty, R. W. “Helicopter Performance, Stablilty, and Control.” 1995.
Sarris, Z. “Survey of UAV Applications in Civil Markets.” 2001.
Schaufele, R. “FAA Aerospace Forecast.” FAA, 2017.
Taylor, J. R. “Introduction to Error Analysis, The Study of Uncertainties in Physical Measurements.” University Science Books, California, 1997.
Theys, B., Dimitriadis, G., Hendrick, P.and Schutter, J. D. “Influence of Propeller Configuration on Propulsion System Efficiency of Multi-Rotor Unmanned Aerial Vehicles.” International Conference on Unmanned Aircraft Systems, 2016.
Wikipedia “Airfoil Geometry.” from https://commons.wikimedia.org/wiki/File:Airfoil_geometry.svg
Wikipedia. “Swashplate.” from https://id.wikipedia.org/w/index.php?title=Berkas:Swash_Plate,_Cyclic_control_helicopter.jpg&filetimestamp=20170312113934&
Yedamale, P. “Brushless DC (BLDC) Motor Fundamentals” Microchip Technology Inc, 2003.
賴舜平,應用測試方法設計葉片改善,成功大學,台南市,台灣,2016。
校內:2023-08-30公開