簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yen-Ting
論文名稱: 利用電暈極化增益多孔 PVDF-TrFE 壓電隔離膜性能以提升壓電奈米發電機及應用於自供電鋰離子電池之評估
Development of Mesoporous PVDF-TrFE Piezo-separator by Corona Poling for Enhancing the Performance of Piezoelectric Nanogenerators into the Viability of Developing Self-powered Lithium-ion Batteries
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 122
中文關鍵詞: PVDF-TrFE電暈極化自供電鋰離子電池壓電性
外文關鍵詞: PVDF-TrFE, Corona poling, Self-powered, Lithium-ion Battery, Piezoelectricity
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 各國對於再生能源的推動以及人類社會對 3C 產品高頻率充電的需求帶動了壓電奈米發電機這類能源捕獲裝置以及鋰離子電池這種熱門的儲能元件的發展,兩者相互結合的自供電系統因而被視為極具前瞻性的系統,如 Figure 1 示。為了適應長期機械能的捕獲,具有導離子性、電絕緣性,以及高延展性、柔韌性的軟性高分子壓電材料被視為自供電鋰離子電池相當重要的一環,高分子壓電材料中的 PVDF-TrFE 共聚物擁有出色的理論縱向壓電係數(30~40 pC/N),是純 PVDF 2 左右。
    然而,現階段已發表之單一元件自供電鋰離子電池研究存在著尚未釐清之自供電機制、錯誤的自供電量測手法、對稱輸出訊號以及誇大之壓電性能等疑慮,為單一元件之自供電鋰離子電池的可行性增添了許多不確定性。
    本研究利用電暈極化增益 PVDF-TrFE 壓電性,並探討極化對偶極排列與輸出性能的影響,同時提出一種透過調控量測頻率以控制壓電電位輸出之不對稱性的方法,最後透過一系列量測手法觀察不同極性下的電化學行為,進而重新評估此元件設計下自供電行為的可能性。

    The promotion of renewable energy in various countries and the demand for high-frequency charging of 3C products in human society has driven the development of energy harvest devices such as piezoelectric nanogenerators (PENGs) and popular energy storage components such as lithium-ion batteries (LIBs). Self-powered systems are thus regarded as prospective systems, as shown in Figure 1. However, the published research on all-in-one self-powered lithium-ion batteries has still not clarified the self-powered mechanism, wrong self-powered measurement methods, symmetrical output signals, and exaggerated piezoelectric performance. The viability of lithium-ion batteries adds a lot of uncertainty. In this study, corona poling is used to gain the piezoelectricity of PVDF-TrFE, and the effect of polarization on the dipole arrangement and output performance is discussed. At the same time, a method to well-control the asymmetry of the piezoelectric potential output by adjusting the measurement frequency is proposed. Finally, a series of measurement methods are used to observe the electrochemical behavior under different polarities and then re-evaluate the possibility of self-powered behavior under this device design.

    摘要 I 致謝 XIV 目錄 XVI 圖目錄 XX 表目錄 XXX 第一章、緒論 1 第二章、理論基礎與文獻回顧 3 2.1 PVDF與PVDF-TrFE 共聚物簡介 3 2.1.1 PVDF與PVDF-TrFE 共聚物基本性質 3 2.1.2 TrFE共聚單體比例對於PVDF-TrFE的影響 7 2.1.3 居禮相變(Curie transition)對於PVDF-TrFE的影響 9 2.1.4 PVDF-TrFE的機械性質 10 2.2 壓電式奈米發電機簡介 14 2.2.1 壓電特性 14 2.2.1.1 壓電發展簡史 14 2.2.1.2 壓電效應之原理 15 2.2.1.3 壓電係數 17 2.2.2 PENG工作原理 23 2.2.3 量測PENG輸出時摩擦電荷造成之人為因素 24 2.2.4 多孔結構對PENG的影響 26 2.2.5 偶極矩排列程度對PENG的影響 32 2.3 電暈放電極化 34 2.4 鋰離子電池簡介 38 2.4.1 鋰離子電池工作機制 38 2.4.2 鋰離子電池材料選擇 39 2.4.2.1 正、負極(Cathode/Anode) 39 2.4.2.2 電解質(Electrolyte) 46 2.4.2.3 隔離膜(Separator) 48 2.5 自供電儲能系統簡介 51 2.5.1 傳統自供電系統-外線路串接 51 2.5.2 新興自供電系統-單一元件 52 2.6 研究動機 56 第三章、實驗與分析方法 57 3.1 實驗設計 57 3.2 實驗材料 58 3.3 多孔壓電隔離膜材料合成及改質方法 59 3.3.1 以刮刀塗佈法合成壓電PVDF-TrFE隔離膜材料 59 3.3.2 電暈放電極化(Corona poling) 59 3.3.3 化學濕式蝕刻(Chemical wet etching) 60 3.4 元件封裝與電池組裝方法 60 3.4.1 壓電奈米發電機元件製作 60 3.4.1.1 以軟性高分子封裝 60 3.4.1.2 以不鏽鋼外殼封裝 61 3.4.2 電極製備與鈕扣半電池組裝 62 3.4.2.1 電極製備 62 3.4.2.2 Li/Si半電池組裝 62 3.4.3 自供電元件組裝 63 3.5 材料分析 63 3.5.1 熱性能分析 63 3.5.2 表面形貌分析 63 3.5.3 晶體結構與官能基團分析 64 3.5.4 機械性質量測 64 3.6 元件量測方法 65 3.6.1 奈米發電機壓電輸出量測 65 3.6.2 CR2032鈕扣半電池性能測試 66 3.6.2.1 定電流充放電循環測試 66 3.6.2.2 速率性能測試 66 3.6.3 自供電性能評估 66 3.6.3.1 自供電行為量測 66 3.6.3.2 循環伏安(CV)與交流阻抗(EIS)量測 67 第四章、實驗結果與討論 68 4.1 退火溫度對PVDF-TrFE板晶成長之影響 68 4.1.1 PVDF-TrFE之結晶行為與表面形貌 68 4.1.2 PVDF-TrFE晶相結構分析 70 4.2 電暈極化對PVDF-TrFE的影響 74 4.2.1 晶體取向性與偶極排列方向 74 4.2.1.1 PVDF-TrFE之晶體取向性分析 74 4.2.1.2 PVDF-TrFE之壓電系數量測與偶極方向性分析 78 4.2.2 PENG輸出性能量測 82 4.2.2.1 開路電壓(VOC)及短路電流(ISC) 82 4.2.2.2 PENG輸出之力效應與頻率效應 83 4.2.3 PVDF-TrFE之機械性質量測 85 4.3 孔隙率對PVDF-TrFE的影響 88 4.3.1 材料表面形貌與機械性質量測 88 4.3.2 電池性能量測 90 4.3.2.1 隔離膜之電解液吸收量(electrolyte uptake)測定 90 4.3.2.2 定電流充放電循環測試 91 4.3.2.3 電池速率性能(Rate capability) 92 4.3.3 PENG輸出量測 94 4.4 壓電隔離膜之自供電行為評估 95 4.4.1 自供電鋰離子電池性能測試 95 4.4.2 交流阻抗分析(EIS) 100 4.4.3 壓電對循環伏安量測的影響(CV under deformation) 104 第五章、結論 111 第六章、參考文獻 112

    [1] X. Pu and Z. L. Wang, "Self-charging power system for distributed energy: beyond the energy storage unit," Chem Sci, vol. 12, no. 1, pp. 34-49, Nov 3 2020, doi: 10.1039/d0sc05145d.
    [2] Y. Liu et al., "Insights into the Morphotropic Phase Boundary in Ferroelectric Polymers from the Molecular Perspective," The Journal of Physical Chemistry C, vol. 123, no. 14, pp. 8727-8730, 2019, doi: 10.1021/acs.jpcc.9b01220.
    [3] N. A. Shepelin et al., "New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting," Energy & Environmental Science, vol. 12, no. 4, pp. 1143-1176, 2019, doi: 10.1039/c8ee03006e.
    [4] Y. Li, C. Liao, and S. C. Tjong, "Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering," Nanomaterials (Basel), vol. 9, no. 7, Jun 30 2019, doi: 10.3390/nano9070952.
    [5] R. GySEL, "Polarisation reversal in ferroelectric PVDF and PZT films," Verlag nicht ermittelbar, 2008.
    [6] Y. Fujisaki, "Poly(Vinylidenefluoride-Trifluoroethylene) P(VDF-TrFE)/Semiconductor Structure Ferroelectric-Gate FETs," in Ferroelectric-Gate Field Effect Transistor Memories, (Topics in Applied Physics, 2020, ch. Chapter 10, pp. 195-222.
    [7] T. Furukawa, "Ferroelectric properties of vinylidene fluoride copolymers," Phase Transitions, vol. 18, no. 3-4, pp. 143-211, 1989, doi: 10.1080/01411598908206863.
    [8] T. Wongwirat, H. Manuspiya, and L. Zhu, "Electroactive fluoropolymers and polyamides," in Fascinating Fluoropolymers and Their Applications, 2020, pp. 83-114.
    [9] Y. Lee et al., "Epitaxially Grown Ferroelectric PVDF-TrFE Film on Shape-Tailored Semiconducting Rubrene Single Crystal," Small, vol. 14, no. 22, p. e1704024, May 2018, doi: 10.1002/smll.201704024.
    [10] Q. Zhang, W. Xia, Z. Zhu, and Z. Zhang, "Crystal phase of poly(vinylidene fluoride-co-trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride-co-chlorotrifluoroethylene)," Journal of Applied Polymer Science, vol. 127, no. 4, pp. 3002-3008, 2013, doi: 10.1002/app.37975.
    [11] S. G. Lu, B. Rozic, Z. Kutnjiak, and Q. M. Zhang, "Electrocaloric Effect in Ferroelectric P(VDF-TrFE) Copolymers," Integrated Ferroelectrics, vol. 125, no. 1, pp. 176-185, 2011, doi: 10.1080/10584587.2011.574491.
    [12] Z. Li, J. Wang, X. Wang, Q. Yang, and Z. Zhang, "Ferro- and piezo-electric properties of a poly(vinyl fluoride) film with high ferro- to para-electric phase transition temperature," RSC Advances, vol. 5, no. 99, pp. 80950-80955, 2015, doi: 10.1039/c5ra15149j.
    [13] Y. Li et al., "Investigation on in-situ sprayed, annealed and corona poled PVDF-TrFE coatings for guided wave-based structural health monitoring: From crystallization to piezoelectricity," Materials & Design, vol. 199, 2021, doi: 10.1016/j.matdes.2020.109415.
    [14] K. J. Kim, N. M. Reynolds, and S. L. Hsu, "Spectroscopic analysis of the crystalline and amorphous phases in a vinylidene fluoride/trifluoroethylene copolymer," Macromolecules, vol. 22, no. 12, pp. 4395-4401, 1989.
    [15] N. Spampinato, J. Maiz, G. Portale, M. Maglione, G. Hadziioannou, and E. Pavlopoulou, "Enhancing the ferroelectric performance of P(VDF-co-TrFE) through modulation of crystallinity and polymorphism," Polymer, vol. 149, pp. 66-72, 2018, doi: 10.1016/j.polymer.2018.06.072.
    [16] M. H. Mohd Wahid et al., "Effect of Annealing Temperature on the Crystallinity, Morphology and Ferroelectric of Polyvinylidenefluoride-Trifluoroethylene (PVDF-TrFE) Thin Film," Advanced Materials Research, vol. 812, pp. 60-65, 2013, doi: 10.4028/www.scientific.net/AMR.812.60.
    [17] M. Baniasadi et al., "Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers," Polymer, vol. 127, pp. 192-202, 2017, doi: 10.1016/j.polymer.2017.08.053.
    [18] J. J. Ruan, "Study on the curie transition of P(VDF-TrFE) copolymer," IOP Conf. Series: Materials Science and Engineering, vol. 299, p. 012056, 2018.
    [19] L. Gargallo and D. Radic, Physicochemical behavior and supramolecular organization of polymers. Springer Science & Business Media, 2009.
    [20] M. A. Meyers and K. K. Chawla, Mechanical behavior of materials. Cambridge university press, 2008.
    [21] N. G. McCrum, C. P. Buckley, C. B. Bucknall, and C. Bucknall, Principles of polymer engineering. Oxford University Press, USA, 1997.
    [22] C. T. Thorpe, H. L. Birch, P. D. Clegg, and H. R. Screen, "Tendon physiology and mechanical behavior: structure–function relationships," in Tendon regeneration: Elsevier, 2015, pp. 3-39.
    [23] Y. Yogo, M. Sawamura, M. Hosoya, M. Kamiyama, N. Iwata, and T. Ishikawa, "Measurement method for stress–strain curve in a super-large strain range," Materials Science and Engineering: A, vol. 600, pp. 82-89, 2014, doi: 10.1016/j.msea.2014.02.026.
    [24] W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of materials research, vol. 19, no. 1, pp. 3-20, 2004.
    [25] Y. Wang et al., "Measurement of viscoelastic properties for polymers by nanoindentation," Polymer Testing, vol. 83, 2020, doi: 10.1016/j.polymertesting.2020.106353.
    [26] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, no. 5771, pp. 242-6, Apr 14 2006, doi: 10.1126/science.1124005.
    [27] Z. L. Wang, "On Maxwell's displacement current for energy and sensors: the origin of nanogenerators," Materials Today, vol. 20, no. 2, pp. 74-82, 2017, doi: 10.1016/j.mattod.2016.12.001.
    [28] G. H. Haertling, "Ferroelectric Ceramics: History and Technology," Journal of the American Ceramic Society—Haertling, vol. 82, pp. 797-818, 1999.
    [29] H. Kawai, "The Piezoelectricity of Poly (vinylidene Fluoride)," Japanese Journal of Applied Physics, vol. 8, p. 975, 1969.
    [30] T. D. Usher, K. R. Cousins, R. Zhang, and S. Ducharme, "The promise of piezoelectric polymers," Polymer International, vol. 67, no. 7, pp. 790-798, 2018, doi: 10.1002/pi.5584.
    [31] S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review," Macromolecular Materials and Engineering, vol. 304, no. 1, 2019, doi: 10.1002/mame.201800463.
    [32] L. Yu and P. Cebe, "Effect of nanoclay on relaxation of poly(vinylidene fluoride) nanocomposites," Journal of Polymer Science Part B: Polymer Physics, vol. 47, no. 24, pp. 2520-2532, 2009, doi: 10.1002/polb.21864.
    [33] X. Chen et al., "A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling," Nanoscale, vol. 7, no. 27, pp. 11536-44, Jul 21 2015, doi: 10.1039/c5nr01746g.
    [34] L. Huo, D. Chen, Q. Kong, H. Li, and G. Song, "Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection," Smart Materials and Structures, vol. 26, no. 2, 2017, doi: 10.1088/1361-665x/26/2/025033.
    [35] E. L. Nix and I. M. Ward, "The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride," Ferroelectrics, vol. 67, no. 1, pp. 137-141, 1986, doi: 10.1080/00150198608245016.
    [36] I. Katsouras et al., "The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)," Nat Mater, vol. 15, no. 1, pp. 78-84, Jan 2016, doi: 10.1038/nmat4423.
    [37] Y. Liu and Q. Wang, "Ferroelectric Polymers Exhibiting Negative Longitudinal Piezoelectric Coefficient: Progress and Prospects," Adv Sci (Weinh), vol. 7, no. 6, p. 1902468, Mar 2020, doi: 10.1002/advs.201902468.
    [38] J.-M. Liu, B. Pan, H. L. W. Chan, S. N. Zhu, Y. Y. Zhu, and Z. G. Liu, "Piezoelectric coefficient measurement of piezoelectric thin films- an overview," Materials Chemistry and Physics, vol. 75, no. 1-3, pp. 12-18, 2002.
    [39] "Piezoresponse Force Microscopy in Its Applications," NT-MDT Spectrum Instruments.
    [40] Z. L. Wang, "Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution," Advanced Energy Materials, vol. 10, no. 17, 2020, doi: 10.1002/aenm.202000137.
    [41] X. Meng et al., "Effects of particle size of dielectric fillers on the output performance of piezoelectric and triboelectric nanogenerators," Journal of Advanced Ceramics, vol. 10, no. 5, pp. 991-1000, 2021, doi: 10.1007/s40145-021-0482-1.
    [42] P. Tofel et al., "Triboelectric Response of Electrospun Stratified PVDF and PA Structures," Nanomaterials (Basel), vol. 12, no. 3, Jan 22 2022, doi: 10.3390/nano12030349.
    [43] A. Sutka, P. C. Sherrell, N. A. Shepelin, L. Lapcinskis, K. Malnieks, and A. V. Ellis, "Measuring Piezoelectric Output-Fact or Friction?," Adv Mater, vol. 32, no. 32, p. e2002979, Aug 2020, doi: 10.1002/adma.202002979.
    [44] D. Chen, K. Chen, K. Brown, A. Hang, and J. X. J. Zhang, "Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting," Applied Physics Letters, vol. 110, no. 15, 2017, doi: 10.1063/1.4980130.
    [45] S. Cha et al., "Porous PVDF as effective sonic wave driven nanogenerators," Nano Lett, vol. 11, no. 12, pp. 5142-7, Dec 14 2011, doi: 10.1021/nl202208n.
    [46] Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, and X. Wang, "Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems," Advanced Energy Materials, vol. 4, no. 7, 2014, doi: 10.1002/aenm.201301624.
    [47] Y.-L. Su, K. Gupta, Y.-L. Hsiao, R.-C. Wang, and C.-P. Liu, "Gigantic enhancement of electricity generation in piezoelectric semiconductors by creating pores as a universal approach," Energy & Environmental Science, vol. 12, no. 1, pp. 410-417, 2019, doi: 10.1039/c8ee02081g.
    [48] V. Cauda, S. Stassi, K. Bejtka, and G. Canavese, "Nanoconfinement: an effective way to enhance PVDF piezoelectric properties," ACS Appl Mater Interfaces, vol. 5, no. 13, pp. 6430-7, Jul 10 2013, doi: 10.1021/am4016878.
    [49] T. Lei, L. Yu, G. Zheng, L. Wang, D. Wu, and D. Sun, "Electrospinning-induced preferred dipole orientation in PVDF fibers," Journal of Materials Science, vol. 50, no. 12, pp. 4342-4347, 2015, doi: 10.1007/s10853-015-8986-0.
    [50] L. Jin, F. Li, S. Zhang, and D. J. Green, "Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures," Journal of the American Ceramic Society, vol. 97, no. 1, pp. 1-27, 2014, doi: 10.1111/jace.12773.
    [51] S. D. Mahapatra et al., "Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials," Adv Sci (Weinh), vol. 8, no. 17, p. e2100864, Sep 2021, doi: 10.1002/advs.202100864.
    [52] S. Fedosov, A. Sergeeva, T. Revenyuk, and A. Butenko, "Application of corona discharge for poling ferroelectric and nonlinear optical polymers," arXiv preprint arXiv:0705.0177, 2007.
    [53] K. Adamiak and P. Atten, "Simulation of corona discharge in point–plane configuration," Journal of Electrostatics, vol. 61, no. 2, pp. 85-98, 2004, doi: 10.1016/j.elstat.2004.01.021.
    [54] J. M. Marshall, Q. Zhang, and R. W. Whatmore, "Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films," Thin Solid Films, vol. 516, no. 15, pp. 4679-4684, 2008, doi: 10.1016/j.tsf.2007.08.039.
    [55] H. Kim, F. Torres, Y. Wu, D. Villagran, Y. Lin, and T.-L. Tseng, "Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application," Smart Materials and Structures, vol. 26, no. 8, 2017, doi: 10.1088/1361-665X/aa738e.
    [56] A. B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, and J. Rödel, "High-temperature poling of ferroelectrics," Journal of Applied Physics, vol. 104, no. 2, 2008, doi: 10.1063/1.2959830.
    [57] S. K. Mahadeva, J. Berring, K. Walus, and B. Stoeber, "Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling," Journal of Physics D: Applied Physics, vol. 46, no. 28, 2013, doi: 10.1088/0022-3727/46/28/285305.
    [58] J. E. Jones, "A theoretical explanation of the laws of Warburg and Sigmond," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 453, no. 1960, pp. 1033-1052, 1997, doi: 10.1098/rspa.1997.0058.
    [59] K. Hidaka and H. Fujita, "A new method of electric field measurements in corona discharge using Pockels device," Journal of Applied Physics, vol. 53, no. 9, pp. 5999-6003, 1982.
    [60] R. Waters, T. Rickard, and W. Stark, "Direct measurement of electric field at line conductors during ac corona," in Proceedings of the Institution of Electrical Engineers, 1972, vol. 119, no. 6: IET, pp. 717-723.
    [61] S. M. Starikovskaia, K. Allegraud, O. Guaitella, and A. Rousseau, "On electric field measurements in surface dielectric barrier discharge," Journal of Physics D: Applied Physics, vol. 43, no. 12, 2010, doi: 10.1088/0022-3727/43/12/124007.
    [62] Y. Cui, C. Zhuang, and R. Zeng, "Electric field measurements under DC corona discharges in ambient air by electric field induced second harmonic generation," Applied Physics Letters, vol. 115, no. 24, 2019, doi: 10.1063/1.5129778.
    [63] R. Sahoo et al., "Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films," Materials Science in Semiconductor Processing, vol. 117, 2020, doi: 10.1016/j.mssp.2020.105173.
    [64] S. Liang et al., "Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance," Solid State Ionics, vol. 318, pp. 2-18, 2018, doi: 10.1016/j.ssi.2017.12.023.
    [65] S. Nowak and M. Winter, "Elemental analysis of lithium ion batteries," Journal of Analytical Atomic Spectrometry, vol. 32, no. 10, pp. 1833-1847, 2017, doi: 10.1039/c7ja00073a.
    [66] W. Lee et al., "Advances in the Cathode Materials for Lithium Rechargeable Batteries," Angew Chem Int Ed Engl, vol. 59, no. 7, pp. 2578-2605, Feb 10 2020, doi: 10.1002/anie.201902359.
    [67] F. Wu, J. Maier, and Y. Yu, "Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries," Chem Soc Rev, vol. 49, no. 5, pp. 1569-1614, Mar 7 2020, doi: 10.1039/c7cs00863e.
    [68] A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, and G. Wu, "Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation," Nano Energy, vol. 27, pp. 359-376, 2016, doi: 10.1016/j.nanoen.2016.07.023.
    [69] C. Zhang et al., "Challenges and Recent Progress on Silicon‐Based Anode Materials for Next‐Generation Lithium‐Ion Batteries," Small Structures, vol. 2, no. 6, 2021, doi: 10.1002/sstr.202100009.
    [70] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-dependent fracture of silicon nanoparticles during lithiation," ACS nano, vol. 6, no. 2, pp. 1522-1531, 2012.
    [71] S. Zhang, "Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries," npj Computational Materials, vol. 3, no. 1, 2017, doi: 10.1038/s41524-017-0009-z.
    [72] H. Kim, M. Seo, M. H. Park, and J. Cho, "A critical size of silicon nano-anodes for lithium rechargeable batteries," Angew Chem Int Ed Engl, vol. 49, no. 12, pp. 2146-9, Mar 15 2010, doi: 10.1002/anie.200906287.
    [73] W.-R. Liu, M.-H. Yang, H.-C. Wu, S. M. Chiao, and N.-L. Wu, "Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder," Electrochemical and Solid-State Letters, vol. 8, no. 2, 2005, doi: 10.1149/1.1847685.
    [74] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries," The Journal of Physical Chemistry C, vol. 115, no. 27, pp. 13487-13495, 2011, doi: 10.1021/jp201691g.
    [75] X. Shen et al., "Research progress on silicon/carbon composite anode materials for lithium-ion battery," Journal of Energy Chemistry, vol. 27, no. 4, pp. 1067-1090, 2018, doi: 10.1016/j.jechem.2017.12.012.
    [76] X.-y. Zhou, J.-j. Tang, J. Yang, J. Xie, and L.-l. Ma, "Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries," Electrochimica Acta, vol. 87, pp. 663-668, 2013, doi: 10.1016/j.electacta.2012.10.008.
    [77] T. Zhang, L. Fu, J. Gao, L. Yang, Y. Wu, and H. Wu, "Core-shell Si/C nanocomposite as anode material for lithium ion batteries," Pure and Applied Chemistry, vol. 78, no. 10, pp. 1889-1896, 2006, doi: 10.1351/pac200678101889.
    [78] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, "Reversible storage of lithium in silver-coated three-dimensional macroporous silicon," Adv Mater, vol. 22, no. 20, pp. 2247-50, May 25 2010, doi: 10.1002/adma.200903755.
    [79] P. Peljo and H. H. Girault, "Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception," Energy & Environmental Science, vol. 11, no. 9, pp. 2306-2309, 2018, doi: 10.1039/c8ee01286e.
    [80] Q. Wang, L. Jiang, Y. Yu, and J. Sun, "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect," Nano Energy, vol. 55, pp. 93-114, 2019, doi: 10.1016/j.nanoen.2018.10.035.
    [81] A. Mauger, C. M. Julien, A. Paolella, M. Armand, and K. Zaghib, "A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives," Materials Science and Engineering: R: Reports, vol. 134, pp. 1-21, 2018, doi: 10.1016/j.mser.2018.07.001.
    [82] L. Long, S. Wang, M. Xiao, and Y. Meng, "Polymer electrolytes for lithium polymer batteries," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10038-10069, 2016, doi: 10.1039/c6ta02621d.
    [83] J. Choi and P. J. Kim, "A roadmap of battery separator development: Past and future," Current Opinion in Electrochemistry, vol. 31, 2022, doi: 10.1016/j.coelec.2021.100858.
    [84] C. M. Costa and S. Lanceros-Mendez, "Recent advances on battery separators based on poly(vinylidene fluoride) and its copolymers for lithium-ion battery applications," Current Opinion in Electrochemistry, vol. 29, 2021, doi: 10.1016/j.coelec.2021.100752.
    [85] A. A. Heidari and H. Mahdavi, "Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review," Chem Rec, vol. 20, no. 6, pp. 570-595, Jun 2020, doi: 10.1002/tcr.201900054.
    [86] S. Luiso and P. Fedkiw, "Lithium-ion battery separators: Recent developments and state of art," Current Opinion in Electrochemistry, vol. 20, pp. 99-107, 2020, doi: 10.1016/j.coelec.2020.05.011.
    [87] C. M. Costa, M. M. Silva, and S. Lanceros-Méndez, "Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications," RSC Advances, vol. 3, no. 29, 2013, doi: 10.1039/c3ra40732b.
    [88] D. Miranda, C. M. Costa, A. M. Almeida, and S. Lanceros-Méndez, "Modeling separator membranes physical characteristics for optimized lithium ion battery performance," Solid State Ionics, vol. 278, pp. 78-84, 2015, doi: 10.1016/j.ssi.2015.05.022.
    [89] C. M. Costa et al., "Mesoporous poly(vinylidene fluoride-co-trifluoroethylene) membranes for lithium-ion battery separators," Electrochimica Acta, vol. 301, pp. 97-106, 2019, doi: 10.1016/j.electacta.2019.01.178.
    [90] M. Kundu, C. M. Costa, J. Dias, A. Maceiras, J. L. Vilas, and S. Lanceros-Méndez, "On the Relevance of the Polar β-Phase of Poly(vinylidene fluoride) for High Performance Lithium-Ion Battery Separators," The Journal of Physical Chemistry C, vol. 121, no. 47, pp. 26216-26225, 2017, doi: 10.1021/acs.jpcc.7b09227.
    [91] J. Xiang et al., "A Lithium-Ion Pump Based on Piezoelectric Effect for Improved Rechargeability of Lithium Metal Anode," Adv Sci (Weinh), vol. 6, no. 22, p. 1901120, Nov 2019, doi: 10.1002/advs.201901120.
    [92] L. Ma et al., "A Usage Scenario Independent “Air Chargeable” Flexible Zinc Ion Energy Storage Device," Advanced Energy Materials, vol. 9, no. 19, 2019, doi: 10.1002/aenm.201900509.
    [93] X. Xue, S. Wang, W. Guo, Y. Zhang, and Z. L. Wang, "Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell," Nano Lett, vol. 12, no. 9, pp. 5048-54, Sep 12 2012, doi: 10.1021/nl302879t.
    [94] X. Xue et al., "CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery," Energy & Environmental Science, vol. 6, no. 9, 2013, doi: 10.1039/c3ee41648h.
    [95] X. Xue et al., "Flexible Self-Charging Power Cell for One-Step Energy Conversion and Storage," Advanced Energy Materials, vol. 4, no. 5, 2014, doi: 10.1002/aenm.201301329.
    [96] L. Xing, Y. Nie, X. Xue, and Y. Zhang, "PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell," Nano Energy, vol. 10, pp. 44-52, 2014, doi: 10.1016/j.nanoen.2014.09.004.
    [97] Y.-S. Kim et al., "Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell," Nano Energy, vol. 14, pp. 77-86, 2015, doi: 10.1016/j.nanoen.2015.01.006.
    [98] Y. Zhang et al., "PVDF-PZT nanocomposite film based self-charging power cell," Nanotechnology, vol. 25, no. 10, p. 105401, Mar 14 2014, doi: 10.1088/0957-4484/25/10/105401.
    [99] H. He et al., "All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics," Nano Energy, vol. 39, pp. 590-600, 2017, doi: 10.1016/j.nanoen.2017.07.033.
    [100] G. Wei, Z. Wang, R. Zhu, and H. Kimura, "PVDF/BCT-BZT Nanocomposite Film for a Piezo-Driven Self-Charging Power Cell," Journal of The Electrochemical Society, vol. 165, no. 7, pp. A1238-A1246, 2018, doi: 10.1149/2.0401807jes.
    [101] S. Yu et al., "Flexible self-charging lithium battery for storing low-frequency mechanical energy," Nano Energy, vol. 94, 2022, doi: 10.1016/j.nanoen.2021.106911.
    [102] G. Suo et al., "Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film," ACS Appl Mater Interfaces, vol. 8, no. 50, pp. 34335-34341, Dec 21 2016, doi: 10.1021/acsami.6b11108.
    [103] N. Meng, X. Ren, J. Wu, E. Bilotti, M. J. Reece, and H. Yan, "Low-cost Free-standing ferroelectric polymer films with high polarization produced via pressing-and-folding," Journal of Materiomics, vol. 8, no. 3, pp. 640-648, 2022, doi: 10.1016/j.jmat.2021.11.009.
    [104] A. Arrigoni, L. Brambilla, C. Bertarelli, G. Serra, M. Tommasini, and C. Castiglioni, "P(VDF-TrFE) nanofibers: structure of the ferroelectric and paraelectric phases through IR and Raman spectroscopies," RSC Adv, vol. 10, no. 62, pp. 37779-37796, Oct 12 2020, doi: 10.1039/d0ra05478j.
    [105] Y. Liu et al., "Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary," Nature, vol. 562, no. 7725, pp. 96-100, Oct 2018, doi: 10.1038/s41586-018-0550-z.
    [106] J. L. Lutkenhaus, K. McEnnis, A. Serghei, and T. P. Russell, "Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene)," Macromolecules, vol. 43, no. 8, pp. 3844-3850, 2010, doi: 10.1021/ma100166a.
    [107] D. O. Alikin, L. V. Gimadeeva, A. V. Ankudinov, Q. Hu, V. Y. Shur, and A. L. Kholkin, "In-plane polarization contribution to the vertical piezoresponse force microscopy signal mediated by the cantilever “buckling”," Applied Surface Science, vol. 543, 2021, doi: 10.1016/j.apsusc.2020.148808.
    [108] Z. Hao et al., "Periodically poled lithium niobate whispering gallery mode microcavities on a chip," Science China Physics, Mechanics & Astronomy, vol. 61, no. 11, 2018, doi: 10.1007/s11433-018-9241-5.
    [109] K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan, S. S. Nardekar, S. Sahoo, and S. J. Kim, "Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy," Nat Commun, vol. 11, no. 1, p. 2351, May 11 2020, doi: 10.1038/s41467-020-15808-6.
    [110] Z. Wang, "Modeling and Simulation of Piezoelectrically Driven Self-Charging Lithium Ion Batteries," ACS Appl Mater Interfaces, vol. 9, no. 18, pp. 15893-15897, May 10 2017, doi: 10.1021/acsami.7b03659.

    下載圖示 校內:2025-08-29公開
    校外:2025-08-29公開
    QR CODE