| 研究生: |
黃俊奎 Huang, Chun-Kuei |
|---|---|
| 論文名稱: |
機車液壓防鎖死煞車模組設計與直行及側傾轉彎控制系統之研究 Design of a Hydraulic Anti-Lock Braking Modulator and Study of a Motorcycle Braking System on Straight Line and Turning a corner |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 機車調壓模組 、機車防鎖死煞車系統控制器 、機車動態方程式 、動態實驗台 、實車測試 |
| 外文關鍵詞: | motorcycle hydraulic modulator, ABS controller, dynamic equations of motorcycle, test bench, on-road motorcycle test |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對機車煞車時的動態特性設計一防鎖死煞車系統,其中包含調壓模組及防鎖死煞車控制器之設計,本研究中設計兩組容積調變式調壓模組進行模擬與實測,結果顯示調壓模組可有效調變煞車壓力追隨參考目標值。防鎖死煞車系統控制器的設計則包含三個部分:調壓模組控制單元、側向控制單元與縱向控制單元,調壓模組控制單元是用來控制調壓模組,讓煞車卡鉗內的煞車油壓力能追隨參考壓力值,其中包含一灰色預測理論用於抑制初始壓力超越量的產生。另外,本研究提出一側向控制邏輯,利用縱向滑差值補償機車在側傾轉彎時的側向穩定性,並且利用此邏輯設計出兩種不同架構之側向控制單元:具側傾角回授、無側傾角回授。側向控制單元可以決策出機車在不同側傾角及不同速度下前後輪之滑差目標值,有側傾角回授的側向控制單元可容許機車在側傾角40度、初始速度60km/hr的狀況下煞車並保持車輛穩定。無側傾角回授的側向控制單元雖然可節省一側傾角感測器之成本,但是其在初始速度60km/hr側傾轉彎煞車下最大可容許側傾角只有23度。至於縱向控制單元的部分,本文也提出兩種控制架構:滑差控制架構、輪速控制架構分別加以研究討論,並且提出一車速估測邏輯,用來估測車輛之速度。除了防鎖死煞車系統設計外,本研究並建造一動態實驗台,用來作為機車直線煞車與側傾轉彎煞車實驗使用,實驗時將設計之機車防鎖死煞車系統安裝於前後輪進行測試與討論。最後則是將防鎖死煞車系統安裝於實車上進直線行駛煞車路試,藉以映證機車防鎖死煞車系統之可行性。
The new anti-lock braking system (ABS) for a motorcycle is presented in this study, and it is designed according to the dynamic responses of motorcycle. The new design ABS includes a hydraulic modulator and controller. Two different volume-adjustable types of hydraulic modulator are presented in this study, and it can efficiently adjust the brake oil pressure in calipers to track target value. ABS controller is divided into three parts: hydraulic modulator control unit, lateral control unit, longitudinal control unit. Hydraulic modulator control unit is used to drive the ABS modulator, which contains a fuzzy and gray prediction theorem. The gray prediction theorem can prevent the overshoot problem of brake oil pressure when driver suddenly grabs brake handle. A concept of lateral control logic is presented, which use longitudinal slip ratio to compensate lateral stability of motorcycle. There are two different types of lateral control unit (with camber angle feedback, without camber angle feedback) has been presented in this study, according to the lateral control logic. Lateral control unit determines the target slip ratio at different camber angle and velocity. The type of lateral control unit with camber angle feedback can make sure the stability of motorcycle braking at 60 km/hr when it has 40 degree of camber angle. Another type of lateral control unit without camber angle feedback can economize on sensor cost, but the maximized allowed camber angle of motorcycle only has 23 degree. Longitudinal control unit also has two different types and be introduced in this study. A velocity estimator is used to estimate the motorcycle velocity. Dynamic test bench is built to experiment the motorcycle braking on straight line or turning around a corner. At the end, an on-road test motorcycle is set up to prove the performance of ABS.
[1] Alfred T. G., “ABS Hydraulic circuit with a variably open inlet valve”, U.S. Patent No.5332304, 1994.
[2] Bullock D., Johnson B., Wells R.B., Kyte M. and Li Z., “Hardware-in-the-loop simulation”, Transportation Research Part C, vol.12, pp.73-89, 2004.
[3] Cart J., “An anti-lock braking system for motorcycles”, IMechE Conference Publications (Institution of Mechanical Engineers), pp.127-138, 1985.
[4] Cossalter V., Doria A. and Lot R., “Steady turning of two-wheeled vehicles”, Vehicle System Dynamics, Vol.31, pp.157-181, 1999.
[5] Cossalter V., Lot R., “A motorcycle multi-body model for real time simulations based on the natural coordinates approach”, Vehicle System Dynamics, Vol.37, pp.423-448, 2002.
[6] Cabrera J. A., Ortiz A., Simon A., Garcia F. and Perez De La blanca A., “A versatile flat track tire testing machine”, Vehicle System Dynamics, Vol.40, No.4, pp.271-284, 2003.
[7] Chen C-K. and Wu J-D., “Development of fuzzy controlled ABS systems for motorcycles”, International Journal of Vehicle Design, Vol.34, No.1, pp.84-100, 2004.
[8] Cossalter V., Lot R., Maggio F., “The modal analysis of a motorcycle in straight running and on a curve”, Meccanica, Vol.39, pp.1-16, 2004.
[9] Pedersen C., Jespersen S.T., Jacobsen K.W., Kroga J.P., Christensen C., Thomsenb E.V., “Highly reliable O-ring packaging concept for MEMS pressure sensors”, Sensors and Actuators, Vol.115, pp.617–627, 2004.
[10] Chen C.-K. and Shih M.-C., “PID-Type Fuzzy Control for Anti-lock Brake Systems with Parameter Adaptation”, JSME, Series C, Vol.47, No.2, pp.675-685, 2004.
[11] Chen C.-K., Hwang C.-P. and Su C.-C., “Implementation of a PC-Based ABS Systems with CAN-bus Interfaces on an Experimental Platform”, International Journal of Vehicle Design, Vol.37, No.4, pp.343-357, 2005.
[12] Chen C.-K., Dao T.-S. and Yang C.-K., “Turning Dynamics and Equilibrium of Two-Wheeled Vehicles”, KSME, Journal of Mechanical Science and Technology, Vol.19, No.1-special issue, pp.377-387, 2005.
[13] Lin C.-F., Tseng C.-Y., Tseng T-W., “A hardware-in-the-loop dynamics simulator for motorcycle rapid controller prototyping”, Control Engineering Practice, Vol.14, pp.1467-147, 2006.
[14] Chen C.-K. and Dao T.-K., “Speed-adaptive Roll-tracking Control of an Unmanned Bicycle Using Fuzzy Logic Controller”, Vehicle System Dynamics, Vol.48, No.1, pp.133-147, 2010.
[15] Huang C.-K. and Shih M.-C., “Dynamic Analysis and control of an Anti-lock Brake System for a Motorcycle with a Camber Angle”, Vehicle System Dynamic, Vol.49, No.4, pp.639-656, 2011.
[16] Huang C.-K. and Shih M.-C., “Design of a hydraulic anti-lock braking System (ABS) for a motorcycle”, Journal of mechanical science and technology, 24(5), pp.1141-1149, 2010.
[17] Dugoff H., Fancher P.S. and Segel L., “An Analysis of Tire Traction Properties and their Influence on Vehicle Dynamic Performance”, SAE Paper No.700377, 1970.
[18] Dubois D.J. and Prade H.M., “Application to Decision Analysis in Presence of Linguistic Probabilities”, Proceedings of the IEEE Conference on Decision and Control, Vol.2, pp.783-787, 1979.
[19] Daniel L., Hertz, JR., “O-rings for low-pressure service”, Machine Design, April 12, 1979.
[20] Deng J.-L. “Grey system fundamental method”, Huazhong University of Science and Technology, Wuhan, china, 1982.
[21] Djoko S. and Rafik A., “Development of brake simulator”, Proceedings of the 6th International Pacific Conference on Automotive Engineering, pp.365-370, 1991.
[22] Eric R., “Effectiveness of Antilock Braking Systems in Reducing Motorcycle Fatal Crash Rates”, Insurance Institute for Highway Safety, January, 2010.
[23] Guntur R.R. and Ouwerkerk H., “Adaptive Brake Control System”, Proceedings of the Institution of Mechanical Engineering, Vol.186, No.68, pp.855-880, 1972.
[24] Grimm A., “Development of Anti-Lock Braking Regulations in the UK”, IMechE Conference Publications (Institution of Mechanical Engineers), pp.73-77, 1985.
[25] Guo K. and Liu Q., “Modeling and Simulation of Non-Steady State Cornering Properties and Identification of Structure Parameters of Tyre”, Vehicle System Dynamics, Vol.27, Suppl., pp.80-93, 1997.
[26] Green D., “A Comparison of stopping distance performance for motorcycles equipped with ABS, CBS and conventional hydraulic brake system”, International motorcycle safety conference, CA, 2006.
[27] Hayashi T. and Inoue H., “Fluid Brake System for a Motorcycle”, U.S. Patent No. 4626038, 1986.
[28] Hikichi T., Tomari T., Katoh M. and Thiem M., “Research on motorcycle antilock brake system - Part 2. Influence on motorcycle braking in turn”, International Symposium on Automotive Technology and Automation, Vol.3, pp.55-62, 1990.
[29] Hauser B., Ohm H.F. and Roll G., “Motorcycle ABS using horizontal and vertical acceleration sensors”, U.S. Patent No. 5445443, 1995.
[30] Hsu C.-C., Chen C.-Y. “Application of grey theory to regional electricity demand forecasting”, Energy Quart, 24, pp.96-108, 1999.
[31] Pacejka H. B., “Tire and Vehicle Dynamics”, Society of Automotive Engineers, 2002.
[32] http://www.bosch.com/assets/en/company/innovation/theme03.htm
[33] http://en.wikipedia.org/wiki
[34] Keiji I., Toshio M., Takayo Y., Rakaya O., “Antiskid braking device for motorcycle”, U.S. Patent No. 5419625, 1995.
[35] Limebeer J.N., Sharp R.S., Evangelou S., “The stability of motorcycles under acceleration and braking”, Journal of Mechanical Engineering Science, Part C, Vol.215, No.9, pp.1095-1110, 2001.
[36] Lu C.-Y., Shih M.-C., “Application of the Pacejka Magic Formula Tyre Model on a Study of a Hydraulic Anti-Lock Braking System for a Light Motorcycle”, Vehicle System Dynamics, Vol.41, No.6, pp.431-448, 2004.
[37] Lu C.-Y. and Shih M.-C., “Design of a Hydraulic Anti-Lock Braking Modulator and an Intelligent Brake Pressure Controller for a Light Motorcycle”, Vehicle System Dynamics, Vol.43, No.3, pp.217-232, 2005.
[38] Lu C.-Y. and Shih M.-C., “An experimental study on the longitudinal and lateral adhesive coefficients between the tyre and the road for a light motorcycle”, Vehicle System Dynamics, Vol.43, pp.168-178, 2005.
[39] Mamdani E.H., “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant”, Proceedings of the Institution of Electrical Engineers, Vol.121, No.12, pp.1585-1588, 1974.
[40] Miennert R.J., “Antilock Brake system Application to a Motorcycle Front Wheel”, SAE Paper No.740630, 1974.
[41] Matteo C., Sergio M.S., Mara T. and Luca F., “On optimal motorcycle braking”, Control Engineering Practice, Vol.16, Issue 6, pp.644-657, 2008.
[42] Dalfio N., Morgando A., Sorniotti A., “Electro-hydraulic brake systems: design and test through hardware-in-the-loop simulation”, Vehicle System Dynamics, Vol.44, suppl., pp.378-392, 2006.
[43] Pickenhahn J., Weidele A., and Fischer M., “Method of anti-lock braking of a motorcycle and of determining the coefficient of adhesion”, U.S. Patent No. 5244259, 1993.
[44] Pacejka H.B. and Bakker E., “The Magic Formula Tyre Model”, Vehicle System Dynamics, Vol.21, Suppl., pp.1-18, 1993.
[45] Pacejka H.B. and Besselink I.J.M., “Magic Formula Tyre Model with Transient Properties”, Vehicle System Dynamics, Vol.27, pp.234-249, 1997.
[46] Sharp R.S., “The Stability and Control of Motorcycles”, Journal of mechanical engineering science, Vol.13, No.5, pp.316-329, 1971.
[47] Sharp R.S., “The lateral dynamics of motorcycles and bicycles”, Vehicle System Dynamics, Vol.14, pp.265-283, 1985.
[48] Roll G., Ohm, H.F. and Hauser B., “Anti-lock control system for motorcycles”, U.S. Patent No. 5344220, 1994.
[49] Roll G., Ohm, H.F. and Hauser B., “Method of regulating the braking force of motorcycles”, U.S. Patent No. 5386366, 1995.
[50] Sharp R.S., Limebeer J.N., “A Motorcycle Model for Stability and Control Analysis”, Multi-body System Dynamics, Vol.6, pp.123-142, 2001.
[51] Sharp R.S., Evangelou S., Limebeer D.J.N., “Advances in the Modeling of Motorcycle Dynamics”, Multi-body System Dynamics, Vol.12, pp.251-283, 2004.
[52] Sun G. “Prediction of vegetable yields by grey model GM(1,1)”, Journal of Grey System, Vol.2, pp.187-197, 1991.
[53] Lee S. J., Kim Y. J. and Park K., “Development of Hardware In the Loop Simulation System and Validation of its Vehicle Dynamic Model for Testing Multiple ABS and TCS Modules”, International Symposium on Advanced Vehicle Control, pp. 833-838, 2004.
[54] Takeshi W. and Kazuhiko T., “Brake assembly for a motorcycle”, U.S. Patent No. 6273523, 2001.
[55] Nenner U., Linker R., Gutman P.O., “Robust feedback stabilization of an unmanned motorcycle”, Control Engineering practice, Vol.18, Issue 8, pp.970-978, 2010.
[56] Vavryn K., Winkelbauer M. “Braking performance of experienced and novice motorcycle riders-results of a field study”, International Conference on Transport and Traffic Psychology, Nottingham, UK, 2004.
[57] Weir D.H., “Motorcycle Handling Dynamics and Rider Control and The Effect of Design Configuration on Response and Performance”, University of California, Ph.D. thesis, 1972.
[58] Weidele A. and Schmieder M., “Research on the power transfer of motorcycle tyres on real road surfaces”, Society of Automotive Engineers, pp.715-720, 1990.
[59] Yeh C., Kuo C.-Y. and Sun P.-L., “Conjugate boundary method for control law design of anti-skid brake systems”, International Journal of Vehicle Design, Vol.11, No.1, pp.40-62, 1990.
[60] Yeh C. and Day G.-C., “Parametric study of anti-skid brake systems using Poincare map concept”, International Journal of Vehicle Design, Vol.13, No.3, pp.210-232, 1992.
[61] Yeh C., Roan G-K. and Yun I.-H., “Development of an anti-lock brake system for motorcycle”, Vehicle System Dynamics, Vol.24, No.4-5, pp.427-444, 1995.
[62] Yue C.-L., Wang L., “Grey-Markov forecast of the stock price”, System Engineering, Vol.16, pp.54-59, 2000.
[63] Zadeh L.A., “Fuzzy set”, Inform. Control, Vol.8, pp.338-353, 1965.
[64] Zadeh L.A., “Toward a Theory of Fuzzy Systems”, NASA CR-1432, 1969.
[65] Zellner J.W., “An Analytical Approach to Antilock Brake System Design”, SAE Paper No.840249, 1984.
[66] Zanten A., Erhardt R. and Lutz A., “Measurement and Simulation of Transients in Longitudinal and Lateral Tire forces”, SAE Transactions, Vol.99, No.6, pp.300-318, 1990.
[67] 葉莒, 王俊堯, “鎖相迴路式伺服型防滑煞車系統”, 中華民國新型專利第205084號, 民國81年。
[68] 李連春, “液壓防止鎖死煞車系統控制器設計之研究”, 國立成功大學機械工程學系碩士論文, 民國86年。
[69] 張瑞宗, “模糊脈寬調變控制液壓防鎖死煞車系統之研究”, 國立成功大學機械工程學系碩士論文, 民國89年。
[70] 施明璋, 陸振原, 張森憲, “機車ABS煞車裝置之改良”, 中華民國新型專利第465504號, 民國89年。
[71] 施明璋, 陸振原, “機車用液壓防鎖死煞車系統之改良”, 中華民國新型專利第492439號, 民國90年。
[72] 陳志鏗, “機車用自動防鎖死煞車系統之油路控制裝置”, 中華民國新型專利第491246號, 民國90年。
[73] 杜明德, 陳志鏗, “防滑煞車系統液壓調節裝置”, 中華民國新型專利第497570號, 民國90年。
[74] 陳志鏗, “主動式煞車液壓調節機構”, 中華民國新型專利第577417號, 民國91年。
[75] 施明璋, 陸振原, “機車液壓防鎖死煞車系統”, 中華民國新型專利第566387號, 民國91年。
[76] 吳銘欽, “汽車防鎖死煞車系統控制之研究”, 國立成功大學機械工程研究所博士論文, 民國91年。
[77] 邱永聰, “防滑煞車系統於機車轉向煞車之研究”, 逢甲大學自動控制工程學系碩士論文, 民國92年。
[78] 陸振原, “機車液壓防鎖死煞車模組設計與系統控制之研究”, 國立成功大學機械工程研究所博士論文, 民國94年。
[79] 朱學熙, “機車過彎時之穩態行為及穩定性分析”, 國立台灣大學工學院機械工程學研究所碩士論文, 民國96年。
[80] 劉思峰、謝乃明, “灰色系統理論及其應用”, 4版,科學出版社, 民國97年。
校內:2021-01-01公開