| 研究生: |
洪世彥 Hung, Shih-Yen |
|---|---|
| 論文名稱: |
脈衝磁場刺激研發及對骨髓間葉幹細胞之骨化效應 A Pulse Electromagnetic Field System Design for Investigating the Effect of Magnetic Stimulation on Osteogenesis |
| 指導教授: |
鍾高基
Chung, Kau-chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 幹細胞 、脈衝 、電磁場 、骨質疏鬆症 、骨質壞死症 |
| 外文關鍵詞: | PEMF, Osteonecrosis, Stem Cells, Electromagnetic Field, Pulse, Osteogenesis, Osteoporosis |
| 相關次數: | 點閱:114 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
骨質壞死症及骨質疏鬆症等是常見的重要骨科疾病,經常造成病患骨折或骨頭壞死需裝置人工髖關節。從1979 年後,脈衝式電磁場開始成功的運用在骨折癒合的治療上,但脈衝式電磁場對於人類骨生成細胞的作用之分子機制仍未明朗且磁刺激時間的耗時甚久,以致於臨床應用價值降低。因此本研究的目的是設計發展磁場強度較高且刺激時間較短的單一脈衝式電磁場探討磁刺激人類骨髓間葉幹細胞的增殖及磁刺激骨母細胞的骨分化之效應。
本研究之單一脈衝式電磁場系統提供1.0 特斯拉等級的強磁場及脈衝週期5 ms的單一脈衝磁場功能;系統設計:電磁線圈、電能儲存及控制迴路模組及由倍壓變壓器所組成的電源模組;系統校正是利用滿載電能儲存輸出電壓、滿載電壓輸出波形訊號及特斯拉檢測。連續式脈衝電磁場系統提供一組包含頻率15 Hz 及磁場強度為20 高斯的固定磁場參數;系統設計:赫模霍茲線圈、IR 2110 所產生的脈衝震盪電路模組、功率放大電路模組及由穩壓IC 所組成的電源模組;系統校正利用調控外部電壓、震盪電路模組量測的電壓訊號波形及特斯拉檢測。人類骨髓間葉幹細胞及骨母細胞接受實驗組及控制組的磁刺激之骨化效應實驗設計分兩階段:首先使用控制組的連續脈衝式電磁場系統磁刺激SaOS2 後,與學者Hannay G 的脈衝式電磁場
實驗比較其結果;第二階段的骨化實驗為利用磁場強度為1.0 特斯拉、每天30 次、每次刺激間隔不超過六秒的單一脈衝電磁場系統刺激人類骨髓間葉幹細胞及骨母細
胞做為實驗組;並使用15 Hz、20 高斯的連續脈衝式電磁場系統每天連續八小時對相同培養環境的人類骨髓間葉幹細胞及骨母細胞的磁刺激做為控制組,分別分析實驗組及控制組對人類骨髓間葉幹細胞磁刺激後的細胞增殖數目及對骨母細胞磁刺激後的鹼性磷酸酶之活性。
目前已完成單一脈衝式電磁場系統及連續脈衝式電磁場系統的雛形,並且完成初步單一脈衝式電磁場系統及連續脈衝式電磁場系統對人類間葉幹細胞增殖及對骨母細胞骨分化實驗。單一脈衝式電磁場系統校正結果為使用800 V 的電能儲存輸出電壓能提供磁場強度為1.0 特斯拉的正旋波磁場、及完成N、S 極的磁場強度之一致性及均勻度校正。連續脈衝式電磁場系統校正結果為使用27 V 的外部電壓能完成系統提供磁場強度為20 高斯、頻率為15 Hz 的連續脈衝磁場、及空間磁場強度維持II20 高斯的磁場強度。單一脈衝式電磁場系統能增加人類骨髓間葉幹細胞在接受磁刺激第四天後的細胞增殖數目,並使接受磁刺激的骨母細胞之鹼性磷酸酶活性高峰提前;接受連續脈衝式電磁場系統磁刺激的人類骨髓間葉幹細胞在第二天及第四天皆抑制人類間葉幹細胞的細胞數目,並對骨母細胞的鹼性磷酸酶在第五天及第七天均抑制其活性。
本研究所發展設計的單一脈衝式電磁場系統,不僅對於細胞無傷害性,並且能增加人類骨髓間葉幹細胞的細胞增殖數目且對骨母細胞能加速其鹼性磷酸酶的活性,相對於連續脈衝式電磁場的磁刺激,加速人類間葉幹細胞及骨母細胞的骨化作用。
有利於臨床上提供磁刺激時間更短且加速人類幹細胞及骨母細胞的骨化作用之脈衝式電磁場。
Abstract
Osteonecrosis is a disease of bone, which ultimately leads to collapse of the
articulating joints such as the hip joint, and may potentially require the need for a total
hip replacement. Osteoporosis is a common type of bone disease where by degradation
of bone matter may lead to potential fractures. The medical treatment designed to offset
or reduce Osteoporosis is not a suitable treatment for patients with liver disease or
patients with Osteonecrosis. The particular treatments increases stress on the liver and the
use of the aforementioned treatment has a number of restrictions, Therefore patients with
Osteonecrosis and Osteoporosis are forced to seek other more suitable treatments.
Pulsed electromagnetic field (PEMF) stimuli were used successfully in 1979 and were
useful in accelerating fracture repair. However, the molecular mechanism of PEMF
effect on human osteogenic cells remains unclear, and no long-term studies of PEMF
application have been done. This research will investigate the effects of high-dose,
single-pulsed, short-duration electromagnetic field (HMSD-EMF) on the proliferation
and osteogenesis potential of human bone marrow mesenchymal stem cells (hBMCs). In
addition, the objective of this study is to investigate the effect of PEMF system on the
proliferation and osteogenesis potential of hBMCs.
The conceptual design for the HMSD-EMF system is to include functions providing
a high grade of magnetic field intensity of 1.0 Tesla, and providing a short-duration pulse
period of 5 milliseconds. The system consists of a circuit-controllable-mould control
power-storage device of charging and discharging to the electromagnetic coil, and
producing the HMSD-EMF of high-grade magnetic field intensity. The full-load voltage,
the wave of the full-load voltage for output and the magnetic field intensity of plane is
calibrated. The conceptual design for continuous type of the PEMF system is to include
functions providing a parameter of regular magnetic field (frequency 15 Hz and intensity
20 gausses). The system consists of a pulse oscillator circuit, a power amplifier, and
Helmholtz coils. The values of external adjust voltage, the pulse signal of a pulse
oscillator circuit for measuring, and the magnetic intensity of space distance between two
coils.
The prototype of HMSD-EMF and PEMF system are completed, and investigating
the effect of electromagnetic field on the proliferation and osteogenesis. The results of
IV
correction of HMSD-EMF system show that the electric energy which used 800 V can
finish intensity of 1.0 Tesla, providing a magnetic field type of sine-wave, producing
uniform and consistency of the intensity of magnetic field for N, S plane. The results of
correction of PEMF system show that the electric energy which used 27 V can finish
intensity of 20 gauss, providing the continuous type of oscillation frequency are 15 Hz,
maintained 20 gauss of intensity of space. The results in HMSD-EMF treated cultures
show that the cell proliferation was increased at day 4 of treatment; the ALP activity was
significantly increased. The results in PEMF treated cultures show that the cell
proliferation was decreased cultures at day 2, and day 4, the ALP activity was
significantly decreased after 5-7 days of treatments.
This system could provide different signal waves of the magnetic field stimulant for
osteogenesis potential of human bone marrow mesenchymal stem cells and investigated
therapeutic effects of practices.
參考文獻
1. B.L. Riggs and L.J. Melton III,”Osteoporosis-etiology, diagnosis, and
management” Lippincott-Raven, Philadelphia New York, 1995 second
edition.
2. H.C. Blair, “How the Osteoclast degrades bone“ Bio-Essays, Vol. 20,
pp.837-846 , 1998
3. 施國正副院長, 行政院衛生署新竹醫院,
http://www.chut.doh.gov.tw/releaseRedirect.do?pageID=527 ,2007 年
4. Je-Ken Chang, Mei-Ling Ho, Ching-Hua Yeh, Chung-Hwan Chen,
Gwo-Jaw Wang*, “Osteogenic Gene Expression Decreases in Stromal Cells
of Patients with Osteonecrosis”, Clinical Orthopaedics and Related
Research, 2006
5. 陳立材,國軍左營醫院藥劑科,Statin 和PUFAs 與骨質疏鬆症之相關性
探討
6. 趙信榮,"鮭魚抑鈣素對去卵巢大白鼠骨骼作用之超顯微結構及骨組織
型態學研究",國防醫學院生物及解剖學研究所解剖學組碩士論文,台
北,八十二年六月。
7. 楊榮森,”骨質疏鬆症-病因,診斷,治療",合記圖書出版社,台北,
八十六年十月。
8. 林興中,高雄榮總, http://www.vghks.gov.tw/meta/osteop-1.htm,台灣
醫界 1995;38:34-38
9. 胡明一 ,解剖學,1998
10. C.T. Brighton, E. Okereke, S.R. Pollack, and C.C. Clark, “In vitro bone -
cell response to a Capacitively coupled electrical field”, Clinical
Orthopedics and Related Research, Vol. 285, pp.255-256, 1992.
11. Om P. Gandhi, “Biological Effects and Medical Applications of
Electromagnetic Energy”, ISBN: 0-13-082728-2, 1990, pp.75-140.
12. Effects of a static magnetic field on cell growth and gene expression in
73
Escherichia coli. Mutation Research 561:53-62, 2004.
13. Effects of a static magnetic field of either polarity on skin microcirculation.
Micro-vascular Research 69: 27-27, 2005.
14. DEXA analysis on the bones of rats exposed in utero and neonatally to
static and 50 Hz electric fields. Bioelectromagnetics, 27-7: 589-592, 2006
Oct.
15. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field.
Radiology, 224-3:817-822, 2002 Sep.
16. No Influence of Magnetic Fields on Cell Cycle Progression Using
Conditions Relevant for Patients during MRI, Bioelectromagnetics,
24:241-250, 2003.
17. WHO health risk assessment process for static fields. Progress in
Biophysics and Molecular Biology, 87:355-363, 2005.
18. MR procedures: biologic effects, safety, and patient care, Radiology,
232-3:635-652, 2004 Sep, Epub 2004 Jul 29. Review.
19. C.A.L. Bassett, R.J. Pawluk, and A.A. Pilla, “Augmentation of bone repair
by inductively-coupled electromagnetic fields”, Science 184:575-577,
1974.
20. C.A.L. Bassett, R.J. Pawluk, and R.O. Becker, “Effect of electrical current
on bone in vivo”, Nature, Vol. 204, pp.652-655, 1964.
21. Acceleration of fracture repair by electromagnetic fields. A surgically
noninvasive method. Ann N Y Acad Sci, 238:242-262, 1974.
22. S. Mishima, “The effect of long-time P.E.M.F. stimulation on experimental
osteoporosis of rats”, Journal of University of Occupational and
Environmental, Vol. 10, No. 1, pp. 31-45, 1988.
23. C.T. Rubin, K.J. McLeod, and L.E. Lanyon, “Prevention of osteoporosis by
pulsed electromagnetic fields”, Journal of Bone and Joint Surgery,
71:411-417, 1989.
24. K.J. McLeod, and C.T. Rubin, “The effect of low frequency electrical
74
fields on osteogenesis”, Journal of Bone and Joint Surgery, 74-6:920-929,
1992.
25. T.M. Skerry, M.J. Pead, and L.E. Lanyon, “Modulation of bone loss during
disuse by pulsed electromagnetic fields”, Journal and Orthopaedic
Research, 9:600-608, 1991.
26. T.T. Yamamoto, M. Kawakami, and M. Sakuda, “Effect of a pulsing
electromagnetic field on demineralized bone-matrix-induced bone
formation in a bony defect in the premaxilla of rats”, Journal of Dental
Research, Vol. 71, No. 12, pp.1920-1925, 1992.
27. C.A.L. Bassett, M.G. Valdes, and E. Hernandez, “Modification of fracture
repair with selected pulsing electromagnetic fields”, Journal of Bone and
Joint Surgery, Vol. 64-A, No. 6, pp.888-895, 1982
28. V. Cane, P. Botti, and S. Soana, “Pulsed magnetic fields improve osteoblast
activity during the repair of an experimental osseous defect”, Journal of
Orthopaedic Research, 11:664-670, 1993.
29. P.S. Landry, K.K. Sadasivan, A.A. Marino, and J.A. Albright,
“Electromagnetic fields can affect osteogenesis by increasing the rate of
differentiation”, Clinical Orthopaedics and Related Research, No. 338,
pp.262-270, 1997.
30. V. Sollazzo, L. Massari, and F. Pezzetti, “Effect of low-frequency pulsed
electromagnetic fields on human osteoblast-like cells in vitro”, Electro-and
Magnetobiolog, Vol. 15, No. 1, pp.75-83, 1996.
31. V. Sollazzo, G.C. Traina, M. DeMattei, A. Pellati, F. Pezzetti, and A.
Caruso, “Responses of human MG-63 osteosarcoma cell line and human
Osteoblast-like cell to pulsed electromagnetic fields”, Bioelectromagnetics,
Vol. 14, pp.541-547, 1997.
32. M.D. Mattei, A. Caruso, G.C. Traina, F. Petteii, T. Baroni, and V. Sollazzo,
“Correlation between pulsed electromagnetic fields exposure time and cell
proliferation increase in human osteosarcoma cell lines and human normal
75
Osteoblast cells in vitro”, Bioelectromagnetics, Vol. 20, No. 3, pp.177-182,
1999.
33. M. Simko, R. Kriehuber, D.G. Weiss, and R.A. Luben, “Effects of 50 Hz
EMF exposure on micronucleus formation and apoptosis in transformed
and non-transformed human cell lines”, Bioelectromagnetics, Vol. 19,
pp.85-91, 1988.
34. K. Heermeier, M. Spanner, J. Trager, R. Gradinger, P.G. Strauss, W. Kraus,
and J. Schmidt, “Effects of extremely low-frequency electromagnetic field
(EMF) on collagen type I mRNA expression and extracellular matrix
synthesis of human osteoblastic cells”, Bioelectromagnetics, Vol. 19,
pp.222-231, 1998.
35. C.H. Lohmann, Z. Schwartz, Y. Liu, H. Guerkov, D.D. Dean, B. Simon,
and B.D. Boyan, “Pulsed Electromagnetic Field Stimulation of MG-63
Osteoblast-like Cells Affects Differentiation and Local Factor Production”,
Journal of Orthopaedic Research, 18:637-646, 2000.
36. K.J. McLeod, and L. Collazo, “Suppression of a differentiation response in
MC-3T3-E1 Osteoblast-like cells by sustained, low-level, 30 Hz
magnetic-field exposure”, Radiation Research, 153:706-714, 2000.
37. M.A.V. Molen, H.J. Donahue, C.T. Rubin, and K.J. McLeod, “Osteoblastic
networks with deficient coupling : Differential effects of magnetic and
electric field exposure”, Bone, 27-2:227-231, 2000.
38. R.J. Fitzsimmons, J.T. Ryaby, F.P. Magee, and D.J. Baylink, “Combined
magnetic fields increased net calcium flux in bone cells”, Calcified Tissue
Int., 55;376-380, 1994.
39. R.J. Fitzsimmons, J.T. Ryaby, F.P. Magee, and D.J. Baylink, “IGF-II
receptor number is increased in TE-85 osteosarcoma cells by combined
magnetic fields”, Journal of Bone and Mineral Research, 10-5:812-819,
1995.