簡易檢索 / 詳目顯示

研究生: 謝乙志
Hsieh, Yi-Chih
論文名稱: 解析臺灣烏心石造林地土壤細菌與真菌相之變動
Deciphering changes in soil bacterial and fungal microbiome of Michelia compressa var. formosana afforestation
指導教授: 蔣鎮宇
Chiang, Chen-Yu
共同指導教授: 黃兆立
Huang, Chao-Li
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 58
中文關鍵詞: 土壤微生物相森林復育擴增子定序
外文關鍵詞: soil microbiome, forest restoration, amplicon sequencing
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 森林管理有助於維持物種多樣性與水土保持,是面對極端環境挑戰的重要一環。在台灣的森林管理與復育已行之有年並有大量研究文獻產出,然而對於人工管理森林的土壤微生物相等相關研究仍有相當探討的空間。本研究中,我們著重於三處不同時間點栽種的台灣烏心石人造林,依其不同的森林成熟時間作為長達16年的時間序列,分析其中土壤微生物之變化。採樣地點包括:三處烏心石人造林、一處海拔高度相近之天然混合林及一處逾百年的高海拔烏心石天然林地。透過擴增子定序(amplicon sequencing)與高通量分子條碼(metabarcoding)技術,我們發現在人工林細菌相與真菌相的β多樣性皆隨造林時間順序排列分布;加入兩處天然林後發現,其中細菌相的β多樣性差異分布可能受到海拔高度的差異所影響,而真菌相的差異分布則可能受到林地是否為烏心石作為主要植被的影響。而線性判別分析(Linear discriminant analysis effect size, LEfSe)當中,發現細菌相的標記物種隨著森林初期階段以有機物分解者的物種為主,會隨著森林成熟的進程,變化於森林較成熟的階段以氮循環相關的物種為主的現象;而在真菌相的生物標記物種,則是以森林初期的草生植物內共生物種為主變化為較成熟階段的以助益植物生長的真菌物種為主,尤其被孢黴屬(Mortierella)在較成熟的烏心石林具有突出的線性判別分數,且組成分布上隨烏心石林成熟的進程而增加,該屬的真菌物種能將土壤中的無機養分轉化為生物可利用的形式,並協助植物根部內共生構造的形成。本研究可做為台灣人造林的土壤微生物研究之一起點,未來或以擴大到不同復育樹種的人造林相關研究,以期能對森林管理與環境復育等議題上做出貢獻。

    The forest management is an important task combating against the extreme environmental challenges. In Taiwan, the forest management and restoration have been carried out for decades with numerous publications in research. However, there has been limited research on the soil microbiome within managed forests. In this study, we initiated a research project focusing on the 3 managed Michelia formosana forests with different plantation time to examine the changes of soil microbiome along the forest maturity time as 16 years chrono-sequence. The study sites included the 3 managed Michelia forests, a natural mix-woods at similar elevation, a 100 year aged natural Michelia forest at high elevation with determination of the effects in different tree plantations and elevations for soil microbiome. With the aid of amplicon sequencing and metabarcoding, we revealed both bacterial and fungal communities of restoring forests having a step wised pattern along plantation time in beta diversity. And further, with two natural sites included, the bacterial communities showed effected by elevation while the fungal communities showed effected by plantation species. The linear discriminant analysis (LDA) effect size and composition both highlighted Mortierella species and correlation with the maturity progress of the Michelia formosana forest. The further investigation of composition and intersected core microbiome suggested that the managed forest microbiome would vary in a different way from other natural two.
    This research served as a starting point for soil microbiome research on Taiwan managed forests which could ultimately support the work of forest management and environmental restoration purposes with further investigation.

    中文摘要 I ABSTRACT II 致謝 III INTRODUCTION 1 MATERIAL AND METHODS 2 Study sites 2 Soil property measurement, DNA extraction and preparation 3 High throughput 16S and ITS rRNA amplicon sequencing 4 Data analysis 4 RESULT 5 The SL98 and SL90 sample examination 5 Soil quality data 6 The bacterial and fungal community correlation with soil quality properties 7 The diversity and community structure of entire examined sites 7 The 3 SL artificial forest sites 11 The potential biomarkers based on LEfSe results 13 SL community comparison with XT 14 SL community comparison with YC 15 Different sampling time effect 16 DISCUSSION 16 The Shuili artificial forest bacterial and fungal microbiome 16 Potential indicators (or biomarkers) among three Shuili forest sites 20 The comparison between Shuili sites with other two natural sites 23 The biomarker Mortierellales spp. and potential bacterial fungal interaction (FBI) 25 CONCLUSION 26 REFERENCE 27 TABLES AND FIGURES 33 Tables 33 Figures 38

    1. Gustafson, K. (2021, October 26). What is forest restoration and how do we do it well? WWF. Retrieved December 30, 2021, from https://www.worldwildlife.org/stories/what-is-forest-restoration-and-how-do-we-do-it-well
    2. Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A., & Fierer, N. (2016). Genome reduction in an abundant and ubiquitous soil bacterium Candidatus Udaeobacter copiosusâ. https://doi.org/10.1038/nmicrobiol.2016.198
    3. Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications 2016 7:1, 7(1), 1–10. https://doi.org/10.1038/ncomms13630
    4. Hirsch, P. R., Mauchline, T. H., & Clark, I. M. (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biology and Biochemistry, 42(6), 878–887. https://doi.org/10.1016/J.SOILBIO.2010.02.019
    5. Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., Bailey, M. J., Nalin, R., & Philippot, L. (2009). TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology 2009 7:4, 7(4), 252–252. https://doi.org/10.1038/nrmicro2119
    6. Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., & Whiteley, A. S. (2011). The bacterial biogeography of British soils. Environmental Microbiology, 13(6), 1642–1654. https://doi.org/10.1111/J.1462-2920.2011.02480.X
    7. Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37(2), 112–129. https://doi.org/10.1111/J.1574-6976.2012.00343.X
    8. Stone, D., Blomkvist, P., Hendriksen, N. B., Bonkowski, M., Jørgensen, H. B., Carvalho, F., Dunbar, M. B., Gardi, C., Geisen, S., Griffiths, R., Hug, A. S., Jensen, J., Laudon, H., Mendes, S., Morais, P. v., Orgiazzi, A., Plassart, P., Römbke, J., Rutgers, M., … Creamer, R. E. (2016). A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. Applied Soil Ecology, 97, 3–11. https://doi.org/10.1016/J.APSOIL.2015.06.017
    9. Janzen, H. H. (2016). The Soil Remembers. Soil Science Society of America Journal, 80(6), 1429–1432. https://doi.org/10.2136/SSSAJ2016.05.0143
    10. Gellie, N. J. C., Mills, J. G., Breed, M. F., & Lowe, A. J. (2017). Revegetation rewilds the soil bacterial microbiome of an old field. Molecular Ecology, 26(11), 2895–2904. https://doi.org/10.1111/MEC.14081
    11. Polymenakou, P. N. (2012). Atmosphere: A Source of Pathogenic or Beneficial Microbes? Atmosphere 2012, Vol. 3, Pages 87-102, 3(1), 87–102. https://doi.org/10.3390/ATMOS3010087
    12. Liddicoat, C., Weinstein, P., Bissett, A., Gellie, N. J. C., Mills, J. G., Waycott, M., & Breed, M. F. (2019). Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health? Environment International, 129, 105–117. https://doi.org/10.1016/J.ENVINT.2019.05.011
    13. Armbruster, M., Goodall, T., Hirsch, P. R., Ostle, N., Puissant, J., Fagan, K. C., Pywell, R. F., & Griffiths, R. I. (2021). Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. European Journal of Soil Science, 72(6), 2430–2444. https://doi.org/10.1111/EJSS.12977
    14. Bureau, F. (2016). RESOURCES & RESEARCH - Forest Resources Survey - Forested Lands in Taiwan Island Proper. http://www.forest.gov.tw//EN/0001392
    15. Cheng, M. J., Lo, W. L., Huang, J. C., Yeh, Y. T., Hong, Z. L., Lu, Y. C., Chang, M. S., & Chen, C. Y. (2010). Isolation of a new monoterpenic ester from the leaves of Michelia compressa (Maxim.) Sargent var. formosana Kanehira (Magnoliaceae). Http://Dx.Doi.Org/10.1080/14786410903281774, 24(7), 682–686. https://doi.org/10.1080/14786410903281774
    16. Scheuer, C., Boot, E., Carse, N., Clardy, A., Gallagher, J., Heck, S., Marron, S., Martinez-Alvarez, L., Masarykova, D., Mcmillan, P., Murphy, F., Steel, E., Ekdom, H. van, & Vecchione, H. (2004). Chemical constituents from the stems of Michelia compressa. Chinese Pharmaceutical Journal, 56(2), 69–75. https://doi.org/10.2/JQUERY.MIN.JS
    17. Amacher, M. C., O’Neil, K. P., & Perry, C. H. (2007). Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. In USDA Forest Service - Research Paper RMRS-RP (Issue 65 RMRS-RP). https://doi.org/10.2737/RMRS-RP-65
    18. Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of Acidobacteria: Moving beyond genes and genomes. Frontiers in Microbiology, 7(MAY), 171794. https://doi.org/10.3389/FMICB.2016.00744/BIBTEX
    19. Slonczewski JL, Foster JW, Foster E. Microbiology: An Evolving Science 5th Ed. WW Norton & Company; 2020.
    20. White, R. A., Bottos, E. M., Roy Chowdhury, T., Zucker, J. D., Brislawn, C. J., Nicora, C. D., Fansler, S. J., Glaesemann, K. R., Glass, K., & Jansson, J. K. (2016). Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes. MSystems, 1(3). https://doi.org/10.1128/MSYSTEMS.00045-16/SUPPL_FILE/SYS003162031ST7.XLSX
    21. He, M. Q., & Zhao, R. L. (2021). Outline of Basidiomycota. Encyclopedia of Mycology, 310–319. https://doi.org/10.1016/B978-0-12-819990-9.00065-2
    22. Voigt, K., & Kirk, P. M. (2014). FUNGI | Classification of Zygomycetes: Reappraisal as Coherent Class Based on a Comparison between Traditional versus Molecular Systematics. Encyclopedia of Food Microbiology: Second Edition, 54–67. https://doi.org/10.1016/B978-0-12-384730-0.00136-1
    23. Arthurs, S. P., & Bruck, D. J. (2017). Microbial Control of Nursery Ornamental and Landscape Plant Pests. Microbial Control of Insect and Mite Pests: From Theory to Practice, 355–366. https://doi.org/10.1016/B978-0-12-803527-6.00024-X
    24. Cousin, M. A. (2014). FUNGI | Classification of the Eukaryotic Ascomycetes. Encyclopedia of Food Microbiology: Second Edition, 35–40. https://doi.org/10.1016/B978-0-12-384730-0.00137-3
    25. Skrede, I. (2021). Diversity and distribution of ligninolytic fungi. Advances in Botanical Research, 99, 1–36. https://doi.org/10.1016/BS.ABR.2021.05.004
    26. Bonfante, P., & Venice, F. (2020). Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biology Reviews, 34(2), 100–113. https://doi.org/10.1016/J.FBR.2019.12.003
    27. Nabi, F., Yang, G., Sajid, S., Chen, H., Rasheed Kaleri, A., Chen, T., Wang, X., & Hu, Y. (2022). Linking soil microbial community with the changes in soil physicochemical properties in response to long-term agricultural land use change of different chronosequences and depth layers. Ecological Indicators, 145, 109727. https://doi.org/10.1016/J.ECOLIND.2022.109727
    28. García-Fraile, P., Benada, O., Cajthaml, T., Baldrian, P., & Lladó, S. (2016). Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Applied and Environmental Microbiology, 82(2), 560–569. https://doi.org/10.1128/AEM.03353-15
    29. Cavaletti, L., Monciardini, P., Bamonte, R., Schumann, P., Ronde, M., Sosio, M., & Donadio, S. (2006). New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Applied and Environmental Microbiology, 72(6), 4360–4369. https://doi.org/10.1128/AEM.00132-06
    30. Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M., & Donadio, S. (2003). Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 2), 569–576. https://doi.org/10.1099/IJS.0.02400-0
    31. Pearce, D. A., Newsham, K. K., Thorne, M. A. S., Calvo-Bado, L., Krsek, M., Laskaris, P., Hodson, A., & Wellington, E. M. (2012). Metagenomic Analysis of a Southern Maritime Antarctic Soil. Frontiers in Microbiology, 3(DEC). https://doi.org/10.3389/FMICB.2012.00403
    32. Yang, S., Xiao, J., Liang, T., He, W., & Tan, H. (2021). Response of soil biological properties and bacterial diversity to different levels of nitrogen application in sugarcane fields. AMB Express, 11(1). https://doi.org/10.1186/S13568-021-01331-4
    33. Reddy, C. A., & Saravanan, R. S. (2013). Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. Advances in Applied Microbiology, 82, 53–113. https://doi.org/10.1016/B978-0-12-407679-2.00003-X
    34. Kämpfer, P., Young, C. C., Arun, A. B., Shen, F. T., Jäckel, U., Rosselló-Mora, R., Lai, W. A., & Rekha, P. D. (2006). Pseudolabrys taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 10), 2469–2472. https://doi.org/10.1099/IJS.0.64124-0
    35. Hanada, S., & Sekiguchi, Y. (2014). The phylum gemmatimonadetes. The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 9783642389542, 677–681. https://doi.org/10.1007/978-3-642-38954-2_164/FIGURES/01643
    36. Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., Nielsen, P. H., Wagner, M., & Daims, H. (2015). Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11371–11376. https://doi.org/10.1073/PNAS.1506533112/-/DCSUPPLEMENTAL
    37. la Scola, B., Mallet, M.-N., Grimont, P. A. D., & Raoult, D. (2002). Description of Afipia birgiae sp. nov. and Afipia massiliensis sp. nov. and recognition of Afipia felis genospecies A. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 5), 1773–1782. https://doi.org/10.1099/00207713-52-5-1773
    38. Jurado, V., Gonzalez-Pimentel, J. L., Miller, A. Z., Hermosin, B., D’Angeli, I. M., Tognini, P., de Waele, J., & Saiz-Jimenez, C. (2020). Microbial Communities in Vermiculation Deposits from an Alpine Cave. Frontiers in Earth Science, 8, 586248. https://doi.org/10.3389/FEART.2020.586248/BIBTEX
    39. He, Y., Hou, X.-Y., Li, C.-X., Wang, Y., & Ma, X.-R. (2022). Soil Microbial Communities Altered by Titanium Ions in Different Agroecosystems of Pitaya and Grape. Microbiology Spectrum, 10(1). https://doi.org/10.1128/SPECTRUM.00907-21/ASSET/CF411CBD-EB23-432D-83DA-F407424C780A/ASSETS/IMAGES/MEDIUM/SPECTRUM.00907-21-F008.GIF
    40. Wang, M., Liu, F., Crous, P. W., & Cai, L. (2017). Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia : Molecular Phylogeny and Evolution of Fungi, 39(December), 118. https://doi.org/10.3767/PERSOONIA.2017.39.06
    41. Khan, M. I. H., Sohrab, M. H., Rony, S. R., Tareq, F. S., Hasan, C. M., & Mazid, M. A. (2016). Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicology Reports, 3, 861. https://doi.org/10.1016/J.TOXREP.2016.10.005
    42. Yeh, Y. H., & Kirschner, R. (2014). Sarocladium spinificis, a new endophytic species from the coastal grass Spinifex littoreus in Taiwan. Botanical Studies, 55(1). https://doi.org/10.1186/1999-3110-55-25
    43. Verkley, G. J. M., da Silva, M., Wicklow, D. T., & Crous, P. W. (2004). Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. In IN MYCOLOGY (Vol. 50).
    44. Weaver, M. A., Hoagland, R. E., Boyette, C. D., & Brown, S. P. (2021). Taxonomic Evaluation of a Bioherbicidal Isolate of Albifimbria verrucaria, Formerly Myrothecium verrucaria. Journal of Fungi 2021, Vol. 7, Page 694, 7(9), 694. https://doi.org/10.3390/JOF7090694
    45. Lynch, S. C., Twizeyimana, M., Mayorquin, J. S., Wang, D. H., Na, F., Kayim, M., Kasson, M. T., Thu, P. Q., Bateman, C., Rugman-Jones, P., Hulcr, J., Stouthamer, R., & Eskalen, A. (2017). Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Http://Dx.Doi.Org/10.3852/15-063, 108(2), 313–329. https://doi.org/10.3852/15-063
    46. Desjardins, A. E. (2003). GIBBERELLA FROM A (VENACEAE) TO Z (EAE)12. Https://Doi.Org/10.1146/Annurev.Phyto.41.011703.115501, 41, 177–198. https://doi.org/10.1146/ANNUREV.PHYTO.41.011703.115501
    47. Cerne, C., Seyedmousavi, S., & Bennett, J. E. (2021). Cutaneous hyalohyphomycosis due to Petriella setifera following traumatic inoculation in an immunocompetent host. Medical Mycology Case Reports, 32, 56–60. https://doi.org/10.1016/J.MMCR.2021.03.002
    48. Bibashi, E., de Hoog, G. S., Kostopoulou, E., Tsivitanidou, M., Sevastidou, J., & Geleris, P. (2009). Invasive infection caused by Pseudallescheria boydii in an immunocompetent patient. Hippokratia, 13(3), 184. /pmc/articles/PMC2765299/
    49. Martin, G. W. (1936). THE APPLICATION OF THE GENERIC NAME GUEPINIA. American Journal of Botany, 23(9), 627–629. https://doi.org/10.1002/J.1537-2197.1936.TB09037.X
    50. Parkinson, L. E., Shivas, R. G., & Dann, E. K. (2017). Novel species of Gliocladiopsis (Nectriaceae, Hypocreales, Ascomycota) from avocado roots (Persea americana) in Australia. Mycoscience, 58(2), 95–102. https://doi.org/10.1016/J.MYC.2016.10.004
    51. ŠPETÍK, M., BERRAF-TEBBAL, A., POKLUDA, R., & EICHMEIER, A. (2021). Pyrenochaetopsis kuksensis (Pyrenochaetopsidaceae), a new species associated with an ornamental boxwood in the Czech Republic. Phytotaxa, 498(3), 177–185. https://doi.org/10.11646/phytotaxa.498.3.3
    52. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2004 2:1, 2(1), 43–56. https://doi.org/10.1038/nrmicro797
    53. Vellinga, E. C., Sysouphanthong, P., & Hyde, K. D. (2017). The family Agaricaceae: phylogenies and two new white-spored genera. Http://Dx.Doi.Org/10.3852/10-204, 103(3), 494–509. https://doi.org/10.3852/10-204
    54. Ozimek, E., & Hanaka, A. (2020). Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, Vol. 11, Page 7, 11(1), 7. https://doi.org/10.3390/AGRICULTURE11010007
    55. Yilmaz, N., Houbraken, J., Hoekstra, E. S., Frisvad, J. C., Visagie, C. M., & Samson, R. A. (2012). Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia, 29, 39–54. https://doi.org/10.3767/003158512X659500
    56. Barbosa, F. F., & Gusmão, L. F. P. (2005). Duas espécies de Speiropsis (Fungo Anamórfico - Hyphomycetes) do Estado da Bahia, Brasil. Acta Botanica Brasilica, 19(3), 515–518. https://doi.org/10.1590/S0102-33062005000300012
    57. Tiwari, D. P., Agrawal, P. D., & Sutton, B. C. (1977). Polyschema variabilis sp.nov. from Indian soil. Transactions of the British Mycological Society, 69(3), 514–516. https://doi.org/10.1016/S0007-1536(77)80098-3
    58. Middelhoven, W. J., Scorzetti, G., & Fell, J. W. (2004). Systematics of the anamorphic basidiomycetous yeast genus Trichosporon Behrend with the description of five novel species: Trichosporon vadense, T. smithiae, T. dehoogii, T. scrabaeorum and T. gamsii. International Journal of Systematic and Evolutionary Microbiology, 54(3), 975–986. https://doi.org/10.1099/ijs.0.02859-0

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE