| 研究生: |
梁文軒 Liang, Wen-Hsuan |
|---|---|
| 論文名稱: |
工業先導級純富氧燃燒之節能減排效益 Energy Saving and Emission Reduction of Oxyfuel and Oxygen Enrichment Combustion at Industrial Pilot Scale |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 燃氣爐 、富氧燃燒 、純氧燃燒 、節能減排 |
| 外文關鍵詞: | Gaseous Furnace, Oxygen Enrichment Combustion, Oxyfuel Combustion, Energy Saving and Emission Reduction |
| 相關次數: | 點閱:194 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先針對100 kW純富氧燃氣試驗爐設計,如儀器、設備及管路等各項選用準則進行討論,接著燃氣爐量測系統規劃中包含溫度、壓力、流量、排放組成、火焰光譜以及火焰型態拍攝,量測工具選用以及其工作原理或者設計方法進行探討。燃氣試驗爐操作等步驟如前置準備、點火程序、運轉中調整、關爐程序以及操作後整理步驟依序列出。本研究也針對100 kW純富氧燃氣試驗爐進行零維、三維模擬,零維模擬將燃氣爐視為全混流反應器進行模擬;三維反應流模擬則針對燃氣爐進行空氣與富氧燃燒穩態模擬,探討不同氧化劑氧濃度條件下爐內熱流場及組成,且模擬溫度與實驗量測誤差可在12%以內。透過實驗以及模擬可得,富氧燃燒時其火焰相較空氣燃燒來的長,壁面溫度提升且溫度場更加均勻,氧化劑氧濃度由21%增加至26%,輻射熱傳效果增強近10倍,能源利用率也從83%提升至87%,煙道氣排放也減少了17.7%,驗證了富氧燃燒節能減排效益。純氧燃燒條件下其火焰顏色相較空氣與富氧燃燒,其藍焰比例大出許多,出口氮氧化物排放則僅有15 ppm,且煙道氣含有高濃度二氧化碳有助於對碳捕捉、封存等後處理製程。
The objective of this study was to quantified energy uiliztzation efficiency of oxygen enrichment combustion. First, according to the design 100 kW gaseous combustion furnace includes equipment, pipes, and measurement system selection. Develop a zero and three dimentional model for 100 kW gaseous combustion furnace. The result show that compare to air combustion, oxygen enrichment combustion get high temperature and residence time. The result from experiment show that increses oxygen concentration in oxidant, flame length and width will increses, more uniform wall temperature, and lower emmisions. The energy uiliztzation efficiency increased 4% when the oxygen concentration was increased from 21% to 26%. The flue gas emmisions compare to air combustion only have 82.4%. The flame color become daker under oxyfuel combustion. The NOx emission only has 15 ppm.
[1] C.E. Baukal Jr, Oxygen-enhanced combustion, CRC press, USA, 1998.
[2] S.A. Skeen, Oxygen-enhanced combustion: theory and applications, Ph.D. Thesis, Washington University in St. Louis, 2009.
[3] Y. Tan, M.A. Douglas, K.V. Thambimuthu (2002), CO2 capture using oxygen enhanced combustion strategies for natural gas power plants, Fuel 81, 1007-1016.
[4] L. Wu, N. Kobayashi, Z. Li, H. Huang (2016), Experimental study on the effects of hydrogen addition on the emission and heat transfer characteristics of laminar methane diffusion flames with oxygen-enriched air, International Journal of Hydrogen Energy 41, 2023-2036.
[5] J. Oh, E. Lee, D. Noh (2015), Development of an oxygen-enhanced combustor for scrap preheating in an electric arc furnace, Applied Thermal Engineering 91, 749-758.
[6] K. Guo, W. Shi, Daohong Wu (2015), Experiment research and simulation analysis of regenerative oxygenenriched combustion technology, Energy Procedia 66, 221-224.
[7] G. Bisio, A. Bosio, G. Rubatto (2002), Thermodynamics applied to oxygen enrichment of combustion air, Energy Conversion and Management 43, 2589-2600.
[8] K. Wu, Y. Chang, C. Chen, Y. Chen (2010), High-efficiency combustion of natural gas with 21–30% oxygen-enriched air, Fuel 89, 2455-2462.
[9] N. Merlo, T. Boushaki, C. Chauveau, S.D. Persis, L. Pillier, B. Sarh, I.Gökalp (2014), Combustion characteristics of methane–oxygen enhanced air turbulent non-premixed swirling flames, Experimental Thermal and Fluid Science 56, 53-60.
[10] Y. Chang, K. Wu, Y. Chen, C. Chen (2015), Atomized air of oxygen-enriched combustion for a 450000 kcal/h industrial furnace, Energy Fuels 29, 3476-3482.
[11] P. Belohradský, P. Skryja, I. Hudák (2014), Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics, Energy 75, 116-126.
[12] L. Chen, S.Z. Yong, A.F. Ghoniem (2012), Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling, Progress in Energy and Combustion Science 38, 156-214.
[13] V. Becher, S. Clausen, A. Fateev, H. Spliethoff (2011), Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments, International Journal of Greenhouse Gas Control 5S, S76-S99.
[14] V. Becher, J.P. Bohn, P. Dias, H. Spliethoff (2011), Validation of spectral gas radiation models under oxyfuel conditions—Part B: natural gas flame experiments, International Journal of Greenhouse Gas Control 5S, S66-S75.
[15] V. Becher, A. Goanta, H. Spliethoff (2012), Validation of spectral gas radiation models under oxyfuel conditions – Part C: validation of simplified models, International Journal of Greenhouse Gas Control 11, 34-51.
[16] V. Becher, J.P. Bohn, A. Goanta, H. Spliethoff (2011), A combustion concept for oxyfuel processes with low recirculation rate – experimental validation, Combustion and Flame 158, 1542-1552.
[17] C. Yin, L.A. Rosendahl, S.K. Kær (2011), Chemistry and radiation in oxy-fuel combustion: A computational fluid dynamics modeling study, Fuel 90, 2519-2529.
[18] M. Sánchez, F. Cadavid, A. Amell (2013), Experimental evaluation of a 20 kW oxygen enhanced self-regenerative burner operated in flameless combustion mode, Applied Energy 111, 240-246.
[19] Y. Tu, H. Liu, S. Chen, Z. Liu, H. Zhao, C. Zheng (2015), Effects of furnace chamber shape on the MILD combustion of natural gas, Applied Thermal Engineering 76, 64-75.
[20] F. Delacroix (2004), The flameless oxidation mode: an efficient combustion device leading also to very low NOx emission levels, producing more with less: Efficiency in Power Generation.
[21] N. Krishnamurthy, W. Blasiak, A. Lugnet, Development of high temperature air and oxy-fuel combustion technologies for minimized CO2 and NOx emissions in industrial heating, The Joint International Conference on “Sustainable Energy and Environment (SEE)”, Hua Hin, Thailand, Dec 1-3, 2004.
[22] J. Palm, Energy efficiency, Sciyo, Netherlands, 2010.
[23] W. Blasiak1, W.H. Yang, K. Narayanan1, J. von Scheele (2007), Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase, Journal of the Energy Institute 80, NO1.
[24] J. von Scheele, M. Gartz, R. Paul, M. T. Lantz (2008), Flameless oxyfuel combustion for increased production and reduced CO2 and NOx emissions, stahl und eisen 128, Nr.7.
[25] Z. Yuan, X. Yang, Z. Lu, J. Huang,Y. Pan, E. Ma (2007), Jet behavior and metallurgical performance of innovated double-parameter oxygen lance in BOF, Journal of Iron and Steel Resrarch 14, 01-05.
[26] J. Li, Y. Zeng, J. Wang, Z. Han (2011), Simulation of flow field of oxygen lance gas jet utilized for 50 t converter, Journal of Iron and Steel Resrarch 18, 11-18.
[27] J. Ren, Y. Fan, F.N. Egolfopoulos, T.T. Tsotsis (2003), Membrane-based reactive separations for power generation applications: oxygen lancing, Chemical Engineering Science 58, 1043-1052.
[28] Z. Zhao, H. Tang, Q. Quan, J. Zhang, S. Shi (2015), Simulation study on performance of novel oxygen-coal lances for pulverized coal combustion in blast furnace tuyere, Procedia Engineering 102, 1667-1676.
[29] K. Andersson, F. Johnsson (2007), Flame and radiation characteristics of gas-fired O2/CO2 combustion, Fuel 86, 656-668.
[30] A.H. Al-Abbas, J. Naser, D. Dodds (2011), CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 kW furnace, Fuel 90, 1778-1795.
[31] J. Zhang, B. Dai, Y. Meng, X. Wu, J. Zhang, X. Zhang,Y. Ninomiya, Z. Zhang, L. Zhang (2015), Pilot-scale experimental and CFD modeling investigations of oxy-fuel combustion of victorian brown coal, Fuel 144, 111-120.
[32] T. A. Ameel, Int. Comm. Heat mass transfer, 24, 112, 1997.
[33] I.L Roberts, J.E.R. Coney, B.M. Gibbs (2013), Estimation of radiation losses from sheathed thermocouples, Applied Thermal Engineering, 1-14.
[34] J.P. Reardon (2015), Computational modeling of radiation effects on total temperature probes, Blacksburg, VA.
[35] A.L. Brundage, S.P. Kearney, A.B. Donaldson, V.F. Nicolette, W. Gill, A joint computational and experimental study to evaluate inconel-sheathed thermocouple performance in flames, Sept. 2005. [PDF].
Available:http://www.osti.gov/scitech/biblio/923075-joint-computational-experimental-study-evaluate-inconel-sheathed-thermocouple-performance-flames, [Accessed: Dec. 14, 2016].
[36] E.F. Fiock, L.O. Olsen, P.D. Freeze (1948), The use of thermolcouples in streaming exhaust Gas, Symposium on Combustion- Flame and Explosion Phenomena 3, 655-662.
[37] R.A. Rossow (2005), Blackbody temperature calculations from visible and NEAR-IR spectra for gas-fired furnaces, Ph.D. Thesis, the faculty of the graduate school university of missouri-colimbia.
[38] C.K. Westbrook, P.L. Dryer (1981), Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combustion Science and Technology 27, 31-43.
[39] S.R. Turns, An introduction to combustion concepts and applications, Mc Grew Hill, 3ed, 2012.
[40] M.F. Modest, radiative heat transfer, Academic Press, 3ed, 2013.
[41] R. D. Chapman, Furnace waste gas sampling, U. S. Patent 6,148,678, 1999.