簡易檢索 / 詳目顯示

研究生: 蔡明哲
Tsai, Ming-Che
論文名稱: 以金屬化學氣相沉積法在砷化鎵基板成長長波長雷射
Growth of GaAs-based Long-Wavelength Laser Diode by MOCVD
指導教授: 張守進
Chang, Shoou-Jinn
蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 115
中文關鍵詞: 雷射砷化鎵金屬化學氣相沉積
外文關鍵詞: laser, GaAs, MOCVD
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在長程通訊系統中,雷射二極體需要操作在1300-155奈米的傳輸窗口。這些需求在傳統磷化銦系統的雷射已經可以被達到。然而,一個新穎的材料(氮)砷化銦鎵成長在砷化鎵基版具備許多優點如:(1).在製作砷化鋁鎵/砷化鎵布拉格反射鏡時有高的折射率差異。(2).有高的特性溫度。(3).有較佳的熱傳導特性。近來,這個材料吸引非常大的注意並且有許多研究團隊專注於此,試圖來挑戰磷化銦系統的雷射半導體市場。
    首先我們研究砷化銦鎵量子井的材料特性並使用金屬有機氣相沉積法來成長。在微調之後,我們得到非常高磊晶品質的砷化銦三重量子井,發光在其先天的材料限制大約1.2微米且半高寬為25.72毫電子伏特。接著我們並介紹氮摻雜、應力平衡層和銻的輔助成長,初期的成果也顯露出其對延伸發光波長的作用。最後我們把成長品質良好的砷化鎵三重量子井應用於寬面積邊射型雷射二極體。
    我們成功地製作砷化鎵三重量子井連續波操作雷射二極體,其發光波長在1220奈米並擁有我們所知道最低的臨界電流56 A/cm2/QW和非常高的特性溫度123.9K。雖然在本論文研究的量子井結構並未完全地應用於雷射二極體,但是我們已經建立一套從長晶到量測的完善系統。相信這對研究半導體雷射過程會有相當大的助益。

    For long-distance communication, the laser diodes with operating in the 1.3-1.55um transmission window are desired. The demands have been achieved by InP-based material systems traditionally applied in long-wavelength laser diodes. However, a novel InGaAs(N) based on GaAs system with many superior intrinsic material properties such as (1).high refraction index difference in fabricating AlGaAs/GaAs DBRs, (2).higher To (characteristic temperature), (3).better thermal conductivity and so on. More recently, the novel material takes much attention and investigated by many research groups to challenge the market of well established InP-system.
    Firstly we investigate the material characteristics of InGaAs QWs (Quantum Well) and grow it by MOCVD (Metal Organic Chemical Vapor Deposition). After fine tune the growth parameters, we get the very high quality InGaAs TQWs with the FWHM of 25.7meV and the innate limitations of the material for the wavelength about 1.2um. Dilute nitride, SML (Strain-Compensation Layer) and antimony assistant are also introduced and some initial results also shown the effects of elongating the wavelength in the following. The high quality TQWs InGaAs is employed in broad area EEL (Edge Emitting Laser) finally.
    We successfully fabricate the InGaAs TQW CW laser diode emission at 1220nm with the lowest Jth/QWs of 56 A/cm2/QW what we know to date and very high To of 123.9K. Though the results of the other QWs structures applied to laser diodes are not achieved yet, we have made a through setup from growth to measurement. We believe that the research in the semiconductor laser diode will be very smooth going.

    Abstract (Chinese)……………………………………………………I Abstract (English)……………………………………………………III Acknowledgements…………………………………V Contents…………………………………………………VI Table Captions………………………………………VIII Figure Captions…………………………………………IX Chapter 1 Introduction……………………………………………1 1-1 Optical Communication…………………………………1 1-2 Material Consideration for Long Wavelength System……3 1-3 Summary of this thesis……………………………6 Chapter 2 Experiment Instrument …………………15 2-1 Metal Organic Vapor Phase Epitaxy Growth Syste…15 2-1.1 Mass transport limited growth …………16 2-1.2 Surface kinetics limited growth ……………………17 2-1.3 Thermodynamically limit growth …………………18 2-2 Measurement System………………………19 2-2.1 HRXRD characterization…………19 2-2.2 Photoluminescence Spectroscopy…20 2-2.3 Secondary Ion Mass Spectrometry…21 2-2.4 Hall measurement…………………22 2-2.5 Laser measurement system…………23 Chapter 3 Fundamental of Material and Laser Device……………32 3-1 Material……………………………………32 3-1.1 InGaAs QWs……………………………32 3-1.2 Nitride Incorporation effects……33 3-1.3 Estimation the Nitrogen Composition…36 3-2 Laser Device………………………………41 3-2.1 Quantum Wells for Laser Structure…………41 3-2.2 Lasing Conditions……………………41 3.2.3 Measurement of Laser Parameters…………43 Chapter 4 Epitaxy of Active Region by MOCVD……………56 4-1 Design Consideration of Quantum Well………………56 4-2 Growth of high quality InGaAs QWs……56 4-3 Extension of Wavelength for the active region…………61 4-3.1 Dilute Nitride………………………61 4-3.2 Strain-Compensation Layer…………62 4-3.3 Antimony Assistant…………………64 Chapter 5 Material Application…………………………………83 5-1 Application to Laser Device………83 5-2 Process Procedure………………………85 5-3 Results & Discussion……………………87 Chapter 6 Conclusion & Future Work………………96 6-1 Conclusion………………………96 6-2 Future Work………………………………98 6-2.1 Active Region………………………98 6-2.2 Distributed Bragg Reflector……98 6-2.3 Summary of Future Work……………99 Appendix………………………………………………103 Reference………………………………………………108

    Chapter 1:
    [1]Optical Fiber Communications, 3rd Edition, By G. Keiser, McGraw-Hill, 2000
    [2]Fiber-Optic Communications Systems, 3rd Edition, By G. P. Agrawal, Wiley-Interscience, 2002
    [3]Lightwave Technology: Components and Devices By G. P. Agrawal, Wiley-Interscience, 2004
    [4]City of Light: The Story of Fiber Optics, Oxford University Press, New York, 1999
    [5]J. S. Harris Jr., Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002
    [6]J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ:Prentice 2002
    [7]Thesis of Master degree, Institute of Applied Physics, CYCU, 2002
    [8]J. S. Harris, Jr. IEEE. J. Sel. Top. Quantum Electron, 6, 1145-1160, 2000
    [9]J. S. Harris, Jr. Semicond. Sci. Technol., 17, 880-991, 2000
    [10]M. Hetterich, M. D. Dawson, A. Y. Egorov, D. BernKlau, and H.Riechert, Appl. Phys. Lett., vol. 76, no. 8, pp. 1030-1032, Feb. 2003
    [11]G. A. Evans. J. P. Sih, T. M. Chou, J. B. Kirk, J. K. Butler, and L.Y. Pang, SPIE In-Plane Semiconductor Lasers:from Ultraviolet to Mid-Infrared II, vol. 3284, San Jose, CA, USA, Jan. 1998, pp.205-210
    [12]J. Piprek, San Diego:Academic Press, 2003
    [13]W. Nakwaski, J. Appl. Phys., vol. 64, no. 1, pp. 159-166, July 1988.
    [14]M. Guden and J. Piprek, Model. Simul. Master. Sci. Eng., vol. 4, no. 4, pp. 349-357, July 1996
    [15]M. A. Afromowitz, Solid State Commum., vol. 15, no. 1, pp. 59-63, July 1974
    [16]F. Hohnsdorf, J. Koch, S. Leu, W. Stilz, B. Borchert, and M. Druminski, Electron. Lett., vol. 35, no. 7, pp. 571-572, Apr. 1999
    [17]B. Borchert, A. Y. Egorov, S. Illek, and H. Riechert, IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 597-599, June 2000
    [18]M. Kawaguchi, E. Gouardes, D. Schlenker, T. Kondo, T. Miyamoto, F. Koyama, and K. Iga, Electron. Lett., vol. 36, no. 21, pp. 1776-1777, Oct 2000
    [19]M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, Jpn. J. Appl. Phys. 1, vol. 35, no. 2B, pp. 1273-1275, Feb 1996
    [20]M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, IEEE J. Select. Topics Quantum Electron., vol. 3, no. 3, pp. 719-730, June 1997
    [21]E. Strom M. Sc. Thesis 2001
    [22]X. Yang, J.B. Heroux, M. J. Jurkanovic, and W. I. Wang, Journal of Vacuum Science and Technology, 17, 1144, 1999
    [23]S. Sato and S. Satoh, Jpn. J. Appl. Phys. 2, vol. 38, no. 9A-B, pp. L990-992, Sept 1999
    [24]T. Kondo, D. Schlenker, T. Miyamoto, Z. Chen, M. Kamaguchi, E. Gouardes, F. Koyama, and K. Iga, Jpn. J. Appl. Phys. 1, vol. 40, no. 2A, pp. 467-471, Feb 2001
    [25]T. Takeuchi, Y. –L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. –C. Luan, Appl. Phys. Lett., vol. 80, no. 14, pp. 2445-2447, Apr 2002

    Chapter 2:
    [1]H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc. Vol. 12, pp. 156, 1968
    [2]H. M. Manasevit , Appl. Phys. Lett. Vol. 116, pp. 1725, 1969
    [3]H. M. Manasevit, J. Cryst. Growth 13/14 306, 1972
    [4]J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas and M. Weyers, J. Cryst. Growth Vol. 195, pp. 151, 1998
    [5]Aixtron 200 User’s Manual, Aixtron AG.
    [6]G.B. “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999
    [7]D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga , J. Cryst. Growth Vol. 221, pp. 503-508, 2000
    [8]F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, Electron. Lett. Vol. 37(15), 957-958, 2001
    [9]C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, J. Malmquist, Electron. Lett. Vol. 38(13), pp.635-636, 2002
    [10]A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett. Vol. 70, pp. 2861- 2863, 1997
    [11]G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers”, Jpn. J. Appl. Phys. Vol. 41 Part 1, No 2B, pp. 1040-1042, 2002
    [12]C. Asplund, P. Sundgren, M. Hammar, Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621
    [13]T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski, and J. Bradley, J. Appl. Phys. Vol. 62, pp. 632-643, 1987
    [14]A. C. Jones, J. Cryst. Growth Vol. 129, pp. 728-773, 1993
    [15]C. Asplund, A. Fujioka, M. Hammar, G. Landgren, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440
    [16]A. T. Macrander, G. P. Schwartz, and G. J. Gualtieri, J. Appl. Phys. Vol.64, pp.6376, 1988
    [17]R. G. Wilson, F. A. Stevie, C. W. Magee, “Secondary Ion Mass Spectrometry”, A Wiley-Interscience Publication, JOHN WILEY & SONS
    Chapter 3:
    [1]Shun-lien Chaung, Wiley Inter-Science, New York, 1995
    [2]J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth, Vol. 27, pp. 118-125, 1974
    [3]Cardona, M., Phys. Rev. 129, 69-78, 1963
    [4]Casey, H. C., and Panish, M. B., J. Appl. Phys. 40:4910-4912, 1969
    [5]Thompson, A. G., Cardona, M., Shaklee, K. L., and Woolley, J. C., Phys. Rev. 146:601-610, 1996
    [6]S. Sakai, Y. Ueta, Y. Terauchi, Jpn. J. Appl. Phys. Vol. 32 (Part 1, NO 10), pp. 4413-4417, 1993
    [7]U. Tisch, E. Finkman, and J. Salzman, Applied Physics Letters, 81, 463, 2002
    [8]Perkins, J.D., Mascarenbas, A., Zhang, Y., Geisz, J. F., Friedman, D. J., Olson, J. M. & Kurtz, S. R. Phys. Rev. Lett., 82, 3312, 1999
    [9]Shan, W., Walukiewick, W., Ager, J. W., III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M. & Kurtz, S. R. Phys. Rev. Lett., 82, 1221 1999
    [10]Francoeur, S., Nikishin, S. A., Jin, C., Qiu, Y. & Temkin, H. Appl. Phys. Lett., 75, 1538, 1999
    [11]A. Lindsay and E. P. O’Reilly, Solid. State Commun., Vol. 112, pp. 443-447, 1999
    [12]J. Wu, W. Shan, and W. Walukiewicz, Semicond. Sci. Technol., Vol.17, pp. 860-869, 2002
    [13]C. Skierbiszewski, Semicond. Sci. Technol., Vol.17, pp. 803-814 (2002)
    [14]C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz, and J. M. Olson, Appl. Phys. Lett., Vol. 76, 2409, 2000
    [15]P. N. Hai, W. M. Chen, I. A. Buyanova, H. P. Xin, and C. W. Tu, Appl. Phys. Lett., Vol. 77, 1843, 2000
    [16]M. Hetterich, M. D. Dawson, A. Yu. Egorov, D. Bernklau, and H. Riechert, Appl. Phys. Lett., Vol. 76, pp. 1030-1032, 2000
    [17]Sarah Kurtz, R. Reedy, Greg D. Barber, J. F. Geisz, D. J. Friedman, W. E. McMahon, and J. M. Olson, J. Cryst. Growth, Vol. 234, pp. 318, 2002
    [18]J. C. Harmand, G. Ungaro, L. Largeau, and G. Le Roux, Appl. Phys. Lett. Vol. 77, pp. 2482-2484 ,2000
    [19]W. Li, M. Pessa, and J. Likonen, Appl. Phys. Lett. Vol. 78, pp. 2864-2866, 2001
    [20]B. R. Nag, S. Mukhopadhyay, phys. stat. sol. (b) Vol. 175, pp. 103-112, 1993
    [21]S. Niki, C. L. Lin, W. S. C. Chang, and H. H. Wieder, Appl. Phys. Lett. Vol. 55, pp. 1339-1341, 1989
    [22]M. A. Herman, D. Bimberg, and J. Christen, J. Appl. Phys. Vol. 70, pp. R1-R52 ,1991
    [23]J. P. Reithmaier, R. Höger, and H. Riechert, Phys. Rev. B, Vol. 43, pp. 4933–4938, 1991
    [24]W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, H. P. Xin, C. W. Tu, phys. stat. sol., Vol. 223, pp. 75-85, 2001
    [25]S. L. Chuang, John Wiley & Sons, 1995
    [26]S. H. Wei and A. Zunger, Phys. Rev. Lett., vol. 76, pp. 664-667, 1996
    [27]M. E. Sherwin, T. J. Drummond, J. Appl. Phys., vol. 69, pp. 8423-8425, 1991
    [28]J. J. Coleman, Academic Press, ISBN 0-12-781890-1, pp. 378, 1993
    [29]R. People and S. K. Sputz, Phys. Rev. B, vol. 41, pp. 8431-8439, 1990
    [30]I-Liang CHEN, Wei-Chou HSU, Hao-Chung KUO, Hsin-Chieh YU, Chia-Pin SUNG, Chen-Ming LU, Chih-Hung CHIOU, Jin-Mei WANG, Yu-Hsiang CHANG, Tsin-Dong LEE and Jyh-Shyang WANG, Jpn. J. Appl. Phys. Vol. 44 No. 10, pp. 7485-7487, 2005

    Chapter 4:
    [1]E. Strom M. Sc. Thesis 2001
    [2]X. Yang, J.B. Heroux, M. J. Jurkanovic, and W. I. Wang, Journal of Vacuum Science and Technology, 17, 1144, 1999
    [3]S. Sato, Jpn. J. Appl. Phy., Vol. 39, pp. 3403-3405, June 2002
    [4]S. Sato, and S. Satoh, Jpn. J. Appl. Phy., Vol. 38, pp. L990-L992, 1999
    [5]F. Bugge, U. Zeimer, S. Gramlich, I. Rechenberg, J. Sebastian, G. Erbert, M. Weyers, J. Cryst. Growth Vol. 221, pp. 496-502, 2000
    [6]D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, K. Iga, J. Cryst. Growth Vol. 209, pp. 27-36, 2000
    [7]Hideo Toyoshima, Takaki Niwa, Jin Yamazaki, and Akihiko Okamoto, J. Appl. Phys. 75 (8), 15, April 2002
    [8] Nelson Tansu, Doctor of Philosophy, 2003
    [9]D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama, K. Iga, J. Cryst. Growth Vol. 221, pp. 503-508, 2000
    [10]D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, K. Iga, IEEE Photon. Technol. Lett., Vol. 11, 946, 1999
    [11]S. Sato, S. Satoh, Jpn. J. Appl. Phys., Vol. 38, L990, 1999
    [12]F. Bugge, M. Zorn, U. Zeimer, T. Sharma, H. Kissel, R. Hulsewede, G. Erbert, M. Weyers. J. Cryst. Growth Vol. 248, pp. 354, 2003
    [13]N. Tansu, Y. –L. Chang, T. Takeuchi, D. P. Bour, S. W. Corzine, M. R. T. Tan, L. J. Mawst, IEEE Trans. Quantum Electron., Vol. 38, 640, 2002
    [14]F. Salomonsson, C. Aspiund, P. Sundgren, G. Plaine, S. Mogg, M. Hammar, Electron. Lett., Vol. 37, 957, 2001
    [15]S. –W. Ryu, P. D. Dapkus, Electron. Lett., Vol. 37, 177, 2001
    [16]A. J. Ptak, Sarah Kurtz, S. W. Johnston, D. J. Friedman, J. F. Geisz, J. M. Olson, W. E. McMahon, A. E. Kibbler, C. Kramer, M. Young, S. –H. Wei. S. B. Zhang, A. Janotti, P. Carrier, R. S. Crandall, B. M. Keyes, P. Dippo, A. G. Norman, W. K. Metzger, R. K. Ahrenkiel, R. C. Reedy, L. Gedvilas, B. To, M. H. Weber, and K. G. Lynn, NCPV and Solar Program Review Meeting 2003
    [17]E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, and S. A. Rushworth, J. Cryst. Growth Vol. 217, pp. 47-54, 2000
    [18]W. Ha, V. Gambin, M. Wistey, S. Kim, J. S. Harris, Jr., IEEE Photon. Technol. Lett., Vol. 14(5), May, 2002
    [19]W. Li, T. Jouhti, C. S. Peng, J. Konttinen, P. Laukkanen, E. –M. Pavelescu, and M. Pessa, Appl. Phys. Lett., Vol. 79(21), pp.3386-3388, Nov, 2002
    [20]Y. Jeng-Ya, M. Luke J., T. Nelson, J. Cryst. Growth Vol. 272, pp. 719-725, DEC, 2004
    [21]T. Kitatani, M. Kondow, and T. Tanaka, J. Cryst. Growth 221, 491, 2000
    [22]W. Li, T. Jouhti, C. S. Peng, J. Konttinen, P. Laukkanen, E. –M. Pavelescu, M. Dumitrescu, and M. Pessa, Appl. Phys. Lett. 79, 3386, 2001
    [23]H. Y. Liu, M. Hopkinson, P. Navaretti, M. Gutierrez, J. S. Ng, and J. P. R. David, Appl. Phys. Lett. 83, 4951, 2003
    [24]E. –M. Pavelescu, C. S. Peng, T. Jouhti, J. Konttinen, W. Li, M. Pessa, M. Dumitrescu, and S. Spanulescu, Appl. Phys. Lett. 29, 3054, 2002
    [25]M. C. Y. Chan, C. Surya, and P. K. A. Wai, J. Appl. Phys. 90, 197, 2001
    [26]C. S. Peng, E. –M. Pavelescu, T. Jouhti, J. Konttinen, I. M. Fodchuk, Y. Kyslovsky, and M. Pessa, Appl. Phys. Lett. 80, 4720, 2002
    [27]C. E. C. Wood, T. M. Kerr, T. D. McLean, D. I. Westwood, J. D. Medland, S. Bright, R. Davies, J. Appl. Phys., Vol. 60, 1300, 1986
    [28]X. Jang, M. J. Jurkovic, J. B. Heroux, W. I. Wang, Appl. Phys., Lett. Vol. 75, 178, 1999
    [29]W. Ha, V. Gambin, M. Wistey, S. Bank, H. Yuen, S. Kim, J. S. Harris, Electron. Lett., Vol. 38, 277, 2002
    [30]Kerstin Volz, Vincent Gambin, Wonill Ha, Mark A. Wistey, Homan Yuen,
    Seth Bank, James S. Harris, J. Cryst. Growth Vol. 2512, pp. 360-3665, 2003
    Chapter 5:
    [1]S. Mogg, N. Chitica, R. Schatz and M. Hammar, Appl. Phys. Lett. Vol. 81, pp. 2334, 2002
    [2]N. Tansu and L. J. Mawst, IEEE Photonics Technol. Lett. Vol. 13, pp. 179, 2001
    [3]T. Kondo, D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, E. Gouardes, F. Koyama and K. Iga, Jpn. J. Appl. Phys. Vol. 40, pp. 467, 2001
    [4]N. Tansu, J. –Y. Yeh, and L. J. Mawst, Appl. Phys. Lett. Vol. 82, pp. 4038, 2003
    [5]L. W. Sung and H. H. Lin, Appl. Phys. Lett. Vol. 83, pp. 1107, 2003
    [6]T. Takeuchi, Y. –L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H. –C. Luan, Appl. Phys. Lett. Vol. 80, pp. 2445, 2002
    [7]P. Sundgren, J. Berggren, P. Goldman, and M. Hammar, Appl. Phys. Lett. Vol. 87, pp. 071104, 2005
    Chapter 6:
    [1]E. Hecht, “Optics”, Addison-Wesley, New York 1987
    [2]Doctoral Thesis by Fredrik Salomonsson in KTH, 2001
    [3]L. A. Coldren and S. W. Corsine, “Diode lasers and photonic integrated circuits”, John Willy & Sons, 1995

    下載圖示 校內:2010-06-26公開
    校外:2010-06-26公開
    QR CODE