簡易檢索 / 詳目顯示

研究生: 蔡晴羽
Tsai, Ching-Yu
論文名稱: 快速二氧化鈦漿料製程開發及其於染料敏化太陽能電池電極之應用研究
Time-effective fabrication of TiO2 colloidal solution via microwave-assisted solvothermal process and its application in dye-sensitized solar cells
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 二氧化鈦微波溶熱網印漿料發展晶面染料敏化太陽能電池
外文關鍵詞: anatase, microwave, solvothermal, screen-printing paste, DSSC
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用溶膠凝膠法搭配微波溶熱法快速合成奈米銳鈦礦相二氧化鈦膠體溶液,反應後之產物無需經過溶劑的置換,且僅需經由適當機械震盪即可有效分散膠體粒子,可用來直接製備DSSC工作電極網印所需之漿料,有效改善傳統漿料製備耗時的缺點。在膠體溶液的分散處理方面,以超音波震盪搭配超音波細胞粉碎機可以達到最佳且單一粒徑分佈的分散效果,分散效果接近單晶粒子大小。而在漿料的配方部分,研究結果發現當二氧化鈦膠體粒子的分散情形接近晶粒大小時,製成的厚膜會因晶粒間孔隙過小,在燒結處理後會有膜裂的現象發生,而在漿料中添加微量去離子水,可使晶粒發生輕微的凝聚作用,反而有助於改善膜裂的情形。此外,在溶膠凝膠法搭配微波溶熱反應過程中,透過改變反應溶劑及螯合劑的添加,可合成不同晶粒大小及不同發展晶面的二氧化鈦奈米晶粒。結果發現,以辛醇作為溶劑所合成的二氧化鈦晶粒具有最高比表面積,其染料吸附率最高,在相同工作電極厚度下,具有最高的光電轉換效率,透過散射層添加電池轉換效率可高達7.70 %。在二氧化鈦晶粒的發展晶面影響上,{001}晶面具有較佳的電子壽命,可抑制DSSC中的電子電洞再結合反應,在相同晶粒尺寸的條件下,可產生較高的光電轉換效率。

    A clean and time-effective process to prepare anatase TiO2 colloidal solution via sol-gel microwave-assisted solvothermal method and its application for dye-sensitized solar cells was investigated in this study. Via a sol-gel microwave-assisted solvothermal reaction, the as-prepared colloidal solutions can be directly used for the paste preparing without the need of solvent exchange. Simple bath and probe sonication treatments allow to improve the aggregation of anatase nanoparticles and is beneficial for obtaining homogeneous TiO2 paste. However, the well-dispersed TiO2 films were found to induce cracks as removing the solvent and binders due to the small pore size of films. In this case, addition of a small amount of deionic water into the paste provoked a slight aggregation of TiO2 nanoparticles and effectively avoided the occurrence of film cracks. In parallel, anatase nanocrystals exposed of {001} or {101} facets were tailored by using different solvents or chelating agent in sol-gel processes. Anatase nanocrystallites exposed of {001} facets were found to retard the electron recombination and increase electron lifetime in DSSC. TiO2 prepared using 1-octanol exhibited small crystallite size around 4-8 nm but also the longest electron transportation path. The photoanode prepared using OCT sample demonstrated the optimal dye loading properties and longest electron lifetime that demonstrates a power conversion efficiency up to 7.7 %.

    中文摘要 I Abstract II 致謝 VIII 目錄 X 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧與理論基礎 4 2.1 二氧化鈦晶體結構 4 2.2 二氧化鈦合成方法 6 2.2.1 溶熱法 6 2.2.2 溶膠凝膠法 7 2.2.3 溶膠凝膠法搭配溶熱法 12 2.3 微波合成技術 15 2.3.1 微波加熱原理 15 2.3.2 微波加熱應用 17 2.3.3 實驗裝置 18 2.4 膠體溶液 19 2.4.1 膠體的定義 19 2.4.2 膠體的分散與凝聚 19 2.4.3 膠體粒子之間的作用力 23 2.4.3.1 凡得瓦爾作用力 23 2.4.3.2 靜電作用力 24 2.4.3.3 空間位阻作用力 28 2.4.4 奈米二氧化鈦膠體溶液的分散 30 2.5 染料敏化太陽能電池 33 2.5.1 染料敏化太陽能結構 33 2.5.1.1 透明導電基板 33 2.5.1.2 工作電極 33 2.5.1.3 光敏化染料 37 2.5.1.4 電解液 38 2.5.1.5 對電極 39 2.5.2 染料敏化太陽能電池工作原理 39 第三章 實驗方法與步驟 42 3.1 實驗藥品 42 3.2 實驗流程 44 3.2.1 製備二氧化鈦膠體溶液 44 3.2.2 二氧化鈦漿料製備及工作電極製備 45 3.2.3 染料敏化太陽能電池封裝 49 3.3 二氧化鈦粉末及工作電極特性分析 50 3.3.1 X-ray 粉末繞射分析 50 3.3.2 穿透式電子顯微鏡 51 3.3.3 X光光電子能譜儀 52 3.3.4 比表面積測定 (BET) 52 3.3.5 動態光散射儀及電泳光散射儀 53 3.3.6 掃描式電子顯微鏡 55 3.3.7 紫外可見光分光光譜儀 55 3.3.8 微細形狀測定儀 (α-step) 57 3.4 染料敏化太陽能電池性能量測 59 3.4.1 電流-電壓特性曲線量測 (I-V curve) 59 3.4.2 入射單色光子-電子轉換效率 62 3.4.3 暫態光電壓∕光電流量測 62 第四章 結果與討論 65 4.1 二氧化鈦的性質討論 65 4.2 膠體溶液的分散 72 4.2.1 pH值影響 73 4.2.2 添加表面活性劑 75 4.2.3 機械震盪法 (超音波震盪搭配細胞粉碎機) 77 4.3 成膜品質對DSSC效能的影響 82 4.3.1 燒結條件 84 4.3.2 乙基纖維素 (EC) 添加量 85 4.3.3 添加微量水的作用 87 4.4 厚度及散射層的增加 92 4.5 不同發展晶面應用於DSSC 97 4.5.1 不同漿料對成膜品質的影響 97 4.5.2 二氧化鈦發展晶面對DSSC的影響 105 4.5.3 電池效率最佳化 111 第五章 結論 113 參考文獻 115

    [1] H. Tsubomura, M. Matsumura, Y. nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, 261, 402-403 (1976).
    [2] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 335, 737-740 (1991).
    [3] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Grätzel, “Enhance the performance of dye-Sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 Nanocrystals,” J. Phys. Chem. B, 107 , 14336-14341 (2003).
    [4] S. Ito, T. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %,” Thin Solid Film., 516, 4618-4619 (2008).
    [5] M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, and C. O. Kappe, “Microwave-assisted synthesis of colloidal inorganic nanocrystals,” Angew. Chem. Ed., 50, 11312-11359 (2011).
    [6] S. Komarneni, R. K. Rajha, and H. Katsuki, “Microwave-hydrothermal processing of titanium dioxide,” Mater. Chem. Phys., 60, 50-54 (1999).
    [7] Y. C. Wu, and Y. C. Tai, “Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method,” J. Nanopart. Res., 15, 1086 (2013).
    [8] 戴妤娟,以微波溶熱法製備奈米級二氧化鈦及其光催化性質研究,國立成功大學碩士論文 (2012)。
    [9] X. Wu, Z. Chen, G. Q. Lu, and L. Wang, “Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells,” Adv. Funct. Mater., 21, 4167-4172, (2011).
    [10] J. Yu, J. Fan, and K. Lv, “Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells,” Nanoscale, 2, 2144-2149 (2010).
    [11] S. Liu, J. Yu, and M. Jaroniec, “Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications,” Chem. Mater., 23, 4085-4093 (2011).
    [12] W. Q. Fang, X. Q. Gong, and H. G. Yang, “On the unusual properties of anatase TiO2 exposed by highly reactive facets,” J. Phys. Chem. Lett., 2, 725-734 (2011).
    [13] P. S. Shen, Y. C. Tai, P. Chen, and Y. C. Wu, “Clean and time-effective synthesis of anatase TiO2nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells,” J. Power Sources, 247, 444-451 (2014).
    [14] U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., 48, 53-229 (2003).
    [15] 陳富亮,最新奈米光觸媒應用技術,林斯頓國際, 46-47 (2003)。
    [16] G. Li, C. P. Richter, R. L. Milot, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig and V. S. Batista, “Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solarcells,” Dalton Trans., 45, 10078-10085 (2009).
    [17] S. Kambe, S. Nakade, Y. Wada, T. Kitamura and S. Yanagida, “Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes,” J. Mater. Chem., 12, 723–728 (2002).
    [18] R. W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, and R. Gronsky, “Synthesis, characterization, and properties of nanophase TiO2,” J. Mater. Res., 3, 1367-1372 (1988).
    [19] B. L. Bischoff, and M. A. Anderson, “Peptization process in the sol-gel preparation of porous anatase (TiO2),” Chem. Mater., 7, 1772–1778 (1995)
    [20] Z. Wang, and U. Helmersson, P. O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films, 405, 50-54 (2002).
    [21] C. C. Wang, and J. Y. Ying, “Sol−Gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chem. Mater., 11, 3113-3120 (1999).
    [22] A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D'Arienzo, S. Polizzi, R. Scotti, and F. Morazzoni, “Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach,” J. Am. Chem. Soc., 129, 3564–3575 (2007).
    [23] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, “Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2,” J. Mater. Chem., 11, 1694-1703 (2001).
    [24] Q. Chen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, “Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method,” Mater. Lett., 22, 77-80 (1995).
    [25] J. Zhu, S. Wang, Z. Bian, S. Xie, C. Cai, J. Wang, H. Yang, and H. Li, “Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity,” CrystEngComm, 12, 2219-2224 (2010).
    [26] W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Am. Ceram. Soc. Bull., 67, 1673-1678 (1988).
    [27] J. Livage, M. Henry, and C. Sanchez, “Sol-gel chemistry of transition metal oxides,” Prog. Solid State Chem., 18, 259-341 (1988).
    [28] 張天益,利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究,國立成功大學碩士論文 (2007)。
    [29] F. Cot, A. Larbot, G. Nabias, L. Cot, “Preparation and characterization of colloidal solution derived crystallized titania powder,” J. Eur. Ceram. Soc., 18, 2175-2181(1998).
    [30] B. A. Morales, O. Novaro, T. López, E. Sánchez, and R. Gómez, “Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel-TiO2 crystalline phases,” J. Mater. Res, 10, 2788-2796 (1995).
    [31] K. Kamiya, K. Tanimoto, and T. Yoko, “Preparation of TiO2 fibres by hydrolysis and polycondensation of Ti(O—i-C3H7)4,” J. Mater. Sci. Let., 5, 402-404 (1986).
    [32] S. Sakka, K. Kamiya, “Glasses from metal alcoholates,” J. Non-Cryst. Solids, 42, 403-421 (1980).
    [33] J. Livage, and C. Sanchez, “Sol-gel chemistry,” J. Non-Cryst. Solids, 145, 11-19 (1992).
    [34] P. D. Cozzoli, A. Kornowski, and H. Weller, “Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods,” J. Am. Chem. Soc., 125, 14539-14548 (2003).
    [35] G. Melcarne, L. D. Marco, E. Carlino, F. Martina, M. Manca, R. Cingolani, G. Gigli, and G. Ciccarella, “Surfactant-free synthesis of pure anatase TiO2 nanorods suitable for dye-sensitized solar cells,” J. Mater. Chem., 20, 7248-7254 (2010).
    [36] S. Doeuff, M. Henry, C. Sanchez, and J. Livage, “Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid,” J. Non-Cryst. Solids, 89, 206-216 (1987).
    [37] C. S. Kim, B. K. Moon, J. H. Park, S. T. Chung, and S. M. Son, “Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route,” J. Cryst. Growth, 254, 405-410 (2003).
    [38] C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, and H. J. Seo, “Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant,” J. Cryst. Growth, 257, 309-315 (2003).
    [39] D. Chen, F. Huang, Y. B. Cheng, and R. A. Caruso, “Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells,” Adv. Mater., 21, 2206-2210 (2009).
    [40] 張育誠,研究微波加熱技術在奈米材料之合成、自組裝及分解機構,國立清華大學碩士論文 (2003)。
    [41] 蘇裕勝,利用液相組合式合成法合成苯并米雜環分子庫,國立東華大學碩士論文 (2003)。
    [42] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, and G. D. Will, “Modification of TiO2 for Enhanced Surface Properties:  Finite Ostwald Ripening by a Microwave Hydrothermal Process,” Langmuir, 22, 2016-2027 (2006).
    [43] 紀柏享、楊末雄、孫毓璋,微波消化之方法與應用,中國化學會,56 卷,269-284 (1998)。
    [44] J. A. Ayllón, A. M. Peiró, L. Saadoun, E. Vigil , X. Domènech, and J. Peral, “Preparation of anatase powders from fluorine-complexed titanium(IV) aqueous solution using microwave irradiation,” J. Mater. Chem., 10, 1911-1914 (2000).
    [45] J. A. Lewis, “Colloidal Processing of Ceramics,” J. Am. Ceram. Soc., 83, 2341-2359 (2000).
    [46] J. Israelachvili, “Intermolecular and Surface Forces,” second edition, Academic Press (1992).
    [47] H.C. Hamaker, “The London—van der Waals attraction between spherical particles,” Phys., 4, 1058-1072 (1937).
    [48] P. C. Hiemenz, “Principles of Colloid and Surface Chemistry,” second edition, Marcel Dekker (1986).
    [49] L. Bergström, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci., 70, 125-169 (1997).
    [50] D.H. Everett, “Basic Principles of Colloid Science,” Royal Society of Chemistry (1988).
    [51] D. J. Shaw, “Introduction to Colloid and Surface Chemistry,” fourth edition, Butterworths (1992).
    [52] M. J. Rosen, “Surfactants and Interfacial Phenomena.” second edition, Wiley, NewYork (1988).
    [53] S. Jailani, G. V. Franks, and T. W. Healy, “ζ potential of nanoparticle suspensions: effect of electrolyte concentration, particle size, and volume fraction,” J. Am. Ceram. Soc., 91, 1141-1147 (2008).
    [54] R. G. Horn, “Surface Forces and Their Action in Ceramic Materials,” J. Am. Ceram. Soc., 73, 1117-1135 (1990).
    [55] S. Fazio, J. Guzmán, M. T. Colomer, A. Salomoni, and R. Moreno, “Colloidal stability of nanosized titania aqueous suspensions,” J. Eur. Ceram. Soc., 28, 2171-2176 (2008).
    [56] J. Jiang, G. Oberdörster, and P. Biswas, “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” J. Nanopart. Res., 11, 77-89 (2009).
    [57] J. M. Berg, A. Romoser, N. Banerjee, R. Zebda, and C. M. Sayes, “The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations,” Nanotechnol., 3, 276-283 (2009).
    [58] C. T. Wamkam, M. K. Opoku, H. Hong, and P. Smith, “Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2nanoparticles,” J. Appl. Phys., 109, 024305 (2011).
    [59] K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, and P. Biswas, “Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties,” Nanoscale Res. Lett., 6, 27 (2011).
    [60] M. Kosmulski, “The significance of the difference in the point of zero charge between rutile and anatase,” Adv. Colloid Interface Sci., 99, 255-264 (2002).
    [61] S. H. Othman, S. A. Rashid, T. I. M. Ghazi, and N. Abdullah, “Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications,” J. Nanomater., 2012, 718214 (2012)
    [62] K. Sato, J.G. Li, H. Kamiya, and T. Ishigaki, “Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension,” J. Am. Ceram. Soc., 91, 2481-2487 (2008).
    [63] A. Zaban, S. Ferrere, and B. A. Gregg, “Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface,” J. Phys. Chem. B, 102, 452-460 (1998).
    [64] M. Grätzel, “Photoelectrochemical cells,” Nature, 414, 338-344 (2001)
    [65] X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, and L. Qi, “Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets,” Adv. Funct. Mater., 21, 3554-3563 (2011).
    [66] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc., 80, 3157-3171 (1997).
    [67] 郭至剛,板鈦礦晶相二氧化鈦之製備、鑑定與光化學應用,國立台灣大學碩士論文,(2009)。
    [68] H.J. Koo, Y.J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N.G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells,” Adv. Mater., 20, 195-199 (2008).
    [69] A. Kay, and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Sol. Energy Mater. Sol. Cells, 44, 99-117 (1996).
    [70] M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem., 44, 6841-6851 (2005).
    [71] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobio. A, 164, 3-14 (2004).
    [72] 翁敏航,楊茹媛,管鴻,晁成虎,太陽能電池:原理、元件、材料、製程與檢測技術 (2012)。
    [73] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, “Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells,” Prog. Photovoltaics, 15, 603-612 (2007).
    [74] 潘善鵬、翁漢甫,機械工業雜誌,288,94 (2007)。
    [75] Nano plus user manual.
    [76] 陳恭世,奈米顆粒敏化奈米晶體二氧化鈦之光電效應研究,國立台灣大學碩士論文 (2005)。
    [77] 陳韋先,暫態光電壓/光電流量測技術應用於染料敏化太陽能電池之研究,國立成功大學碩士論文 (2012)。
    [78] B. C. O’Regan, S. Scully, and A. C. Mayer, “The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements” J. Phys. Chem. B, 109, 4616-4623 (2005).
    [79] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, 101, 2576-2582 (1997).
    [80] H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, and G. Q. Lu, “Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets,” J. Am. Chem. Soc., 4078-4083 (2009).
    [81] W. Göpel, J.A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J.ASchäfer, and G. Rocker, “Surface defects of TiO2(110): A combined XPS, XAES and ELS study,” Surf. Sci., 139,333-346 (1984).
    [82] K, Murata, H. Ushijima, H. Ueda, and K. Kawaguchi, “A stable carbon-based organic magnet,” J. Chem. Soc., Chem. Commun., 567-569 (1992).
    [83] T. Lopez, R. Gomez, E. Sanchez, F. Tzompantzi, and L. Vera, “Photocatalytic activity in the 2,4-Dinitroaniline decomposition over TiO2 sol-gel derived catalysts,” J. Sol-Gel Sci. Technol., 22, 99-107 (2001).
    [84] S. Lee, C. Jeon, and Y. Park, “Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor,” Chem. Mater., 16, 4292-4295 (2004).
    [85] C. C. Chuang, W. C. Wu, M. X. Lee, and J. L. Lin, “Adsorption and photochemistry of CH3CN and CH3CONH2 on powdered TiO2,” Phys. Chem. Chem. Phys., 2, 3877-3882 (2000).
    [86] F. P. Rotzinger, J. M. K. Truttmann, S. J. Hug, V. Shklover, and M. Grätzel, “Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface,” J. Phys. Chem. B, 108, 5004-5017 (2004).
    [87] L. F. Liao, C. F. Lien, D. L. Shieh, M. T. Chen, and J. L. Lin, “FTIR study of adsorption and photoassisted oxygen isotopic exchange of carbon monoxide, carbon dioxide, carbonate, and formate on TiO2,” J. Phys. Chem. B, 106, 11240-11245 (2002).
    [88] J. Soria, J. Sanz, I. Sobrados, J. M. Coronado, M. D. H. Alonso, and F. Fresno, “Water−hydroxyl interactions on small anatase nanoparticles prepared by the hydrothermal route,” J. Phys. Chem. C, 114, 16534-16540 (2010).
    [89] R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique,” Toxicol. Sci., 101, 239-253 (2008).
    [90] O. Vasylkiv, and Y. Sakka, “Synthesis and colloidal processing of zirconia nanopowder,” J. Am. Ceram. Soc., 84, 2489-2494 (2001).
    [91] Y. Zhang, Z. B. Xie, and J. Wang, “Highly efficient dye-sensitized solar cells of thick mesoporous titania films derived from supramolecular templating,” Nanotechnol., 20, 505602 (2009).
    [92] S. K. Dhungel, and J. G. Park, “Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells,” Renewable Energy, 35, 2776-2780 (2010).
    [93] H. Li, Z. Xie, Yu Zhang, and J. Wang, “The effects of ethyl cellulose on PV performance of DSSC made of nanostructured ZnO pastes,” Thin Solid Films, 518, e68–e71 (2010).
    [94] K. Fan, M. Liu, T. Peng, L. Ma, and K. Dai, “Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells,” Renewable Energy, 35, 555–561 (2010).
    [95] G. Li, L. Li, J. Boerio-Goates,and B. F. Woodfield, “High purity anatase TiO2 nanocrystals:  near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry,” J. Am. Chem. Soc., 127, 8659–8666 (2005).
    [96] T. Bezrodna, G Puchkovska, V. Shymanovska, J. Baran, and H. Ratajczak, “IR-analysis of H-bonded H2O on the pure TiO2 surface,” J. Mol. Struct., 700, 175-181 (2004).
    [97] C. Y. Huang, Y. C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee, K. C. Ho, “The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell,” Sol. Energy Mater. Sol. Cells, 90, 2391-2397 (2006).
    [98] M. G. Kang, K. S. Ryu, S. H. Chang, N. G. Park, J. S. Hong, and K. J. Kim, “Dependence of TiO2 film thickness on photocurrent-voltage characteristics of dye-sensitized solar cells,” Bull. Korean Chem. Soc., 25, 742-744 (2004).
    [99] K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays,” Nano Lett., 7, 69-74 (2007).
    [100] D. Vorkapic, and T. Matsoukas, “Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides,” J. Am. Ceram. Soc., 81, 2815-2820 (1998).
    [101] D. Vorkapic, and T. Matsoukas, “Solvent Effects in the Deaggregation of Titania Nanoparticles,” KONA Powder Part. J., 18, 102-107 (2000).

    下載圖示 校內:2015-08-21公開
    校外:2015-08-21公開
    QR CODE