| 研究生: |
宋宏方 Song, Hong-Fang, |
|---|---|
| 論文名稱: |
前列腺素E受體在類橫紋肌上皮腎臟癌中發病機制之重要性 The Significance of Prostaglandin E Receptors in the Pathogenesis of Renal Cell Carcinoma with Rhabdoid Features |
| 指導教授: |
周楠華
Chow, Nan-haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 腎臟細胞癌 、類橫紋肌型態 、INI1基因 、表皮生長因子受體 、前列腺素E受體 |
| 外文關鍵詞: | Renal cell carcinoma, Rhabdoid features, INI1, EGFR, Prostaglandin E receptor |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腎細胞癌是最普遍的腎臟癌,發生於腎臟中的近曲小管中,依照組職學型態clear cell RCC (ccRCC, 70-75%)為最常見的類型。惡性橫紋肌樣瘤是一種罕見及具有高度侵犯性的癌症,發生在嬰兒及小孩的腎臟及腦部,而其最重要的發病機制為Integrase interactor 1 (INI1/hSNF5) 腫瘤抑癌基因的突變或是表現量下降。INI1屬於BAF (hSWI/SNF) complex的成員,其為ATP依賴型染色質重塑複合體,在許多細胞核內的反應像是基因轉錄、DNA複製、修補以及細胞週期當中扮演了重要角色。此外SWI/SNF remodeling complex也參與了細胞增生、分化、抑制病毒活性以及抑制腫瘤形成。而類橫紋肌上皮腎細胞癌在整個腎細胞癌中佔了3% - 7%以及伴隨著較差的預後,然而其發病機制目前還不清楚。在分析了五對腫瘤及正常的檢體之後當中發現在轉錄及轉譯的層次上INI1的表現量下降,在另外追加8個臨床的病例當中(年齡範圍為48到79歲),利用免疫組織染色發現這八個病例中的類橫紋肌細胞核內INI1的表現量缺失以及臨床結果當中發現從診斷到轉移之間的間隔為3至43個月,而在這八位病人當中有四位已經死亡,其中一位存活的病人也已經惡化。為了確認類橫紋肌上皮腎細胞癌中發病機制之重要性,我們利用ACHN細胞株來建立INI1穩定下降的細胞株。在INI1表現之後,伴隨的類橫紋肌特徵、增加細胞增生及EGFR及VEGF家族的表現量及分泌量增加。然而在細胞存活率的實驗當中發現在外加VEGFR的抑制劑(蕾莎瓦(Sorafenib) and紓癌特 (Sunitinib)之後發現腫瘤細胞沒有顯著專一抑制的效果,也因此確立了發展多標靶抗癌藥物治療策略的潛力。在利用microarray 技術分析後所得到的1024 上升和908 下降的基因群中,我們挑選前列腺素E受體家族做為研究目標,因為其可接收PGE2的訊號,而且參與VEGF-C所產生的癌化,以及和EGFR下游的傳導路徑有交互作用。利用RT-PCR及Western blot分析後,發現在INI1表現量下降以後,EP1及EP4的表現量上升。再更深入的探討PGE2/COX的訊息傳遞路徑之後,發現到在INI1表現量下降以後,PGE2分泌量及COX1表現量都會上升。EGFR抑制劑-得舒緩(Erlotinib)對於ACHN INI1表現量穩定下降的細胞株具有顯著的專一性抑制效果;但另一EGFR抑制劑-艾瑞莎(Gefitinib)則沒有顯著抑制效果。而mTOR抑制劑-癌伏妥(Everolimus)也對於ACHN INI1表現量穩定下降的細胞株具有顯著專一性抑制的效果。建立的ACHN INI1&EP1表現量穩定下降的細胞株對會被EGFR抑制劑-得舒緩(Erlotinib)、艾瑞莎(Gefitinib)、以及mTOR抑制劑-癌伏妥(Everolimus)給抑制。本研究顯示得舒緩、艾瑞莎、癌伏妥、以及前列腺素E受體的組合藥物,也許是類橫紋肌上皮腎細胞癌最好的多標靶治療策略。
Renal cell carcinoma (RCC) arises from proximal convoluted tubules and is the most common type of kidney cancer. The common histologic subtypes include clear cell RCC (ccRCC, 70-75%), papillary RCC (16%), chromophobe RCC (7%), translocation carcinoma (1%), collecting duct carcinoma (<0.5%), and renal medullary carcinoma (<0.5%). Malignant rhabdoid tumor is a rare and aggressive malignant tumor that mostly occurs in the kidney and brain of infants and young children. The important pathogenic mechanism of this entity is truncating mutation of a tumor suppressor gene- Integrase interactor 1 (INI1/hSNF5) gene. The INI1, core member of BAF (hSWI/SNF) complex, is an ATP-dependent chromatin-remodeling complex and plays an essential role in multiple nuclear processes, such as transcription, DNA replication and repair and negative regulator of cell cycle. In addition, the SWI/SNF remodeling complex also involves in cell proliferation, differentiation, antiviral activity, and inhibition of tumor formation. RCC with rhabdoid features (RCC-RF) occur in around 3% to 7% of RCC and is associated with a poor prognosis. However, its pathogenesis remains elusive. Analysis of paired tumor and non-neoplastic kidney specimens (n = 5) revealed down-regulation of INI1 at both transcriptional and translational levels. A total of 8 cases (age ranged from 48 to 79) were retrieved from archive and analyzed for INI1 immunohistochemistry and clinical outcome. Loss of nuclear INI1 expression was demonstrated in the rhabdoid cells in all 8 cases compared with adjacent ccRCC. The interval between diagnosis and metastasis ranged from 3 to 43 months. Four of them died of cancer and one patient is alive with progressive disease despite of treatment with targeted therapies. To identify molecular pathogenesis of RCC-RF, an INI1 stable knock-down cell line was established from ACHN ccRCC. Suppression of INI1 was significantly associated with rhabdoid changes, enhanced cell proliferation, up-regulated EGFR, and VEGF expression/secretion in vitro. However, only Everolimus and Erlotinib were effective in suppression the growth of INI1 stable knock-down cell line, whereas treatment with VEGFR inhibitors (sorafenib or sunitinib) did not inhibit the growth of tumor cells. To identify potential co-targeting molecules, EP family, which receives PGE2 signal, was chosen from microarray profiling for investigation because of its involvement in VEGF-C-mediated pulmonary carcinogenesis and a crosstalk with EGFR. RT-PCR screening revealed an up-regulated EP1 and EP4 in ACHN INI1 knock-down stable cells compared with control. We also demonstrated that PGE2 synthase-COX1 is up-regulated by knocking down the INI1. Erlotinib (EGFR inhibitor) effectively inhibited the growth of ACHN INI1 knock-down cells compared with vector control; whereas Gefitinib had no inhibitory effect. The Everolimus (mTOR inhibitor) also inhibited the growth of ACHN INI1 knock-down cells. Both Everolimus and EGFR inhibitors (Erlotinib and Gefitinib) effectively suppressed the growth of ACHN INI1 and EP1 double knockdown cells. Using this model experiment, a cocktail of PGE2/EP1 pathway inhibitor together with Everolimus and EGFR inhibitor (Erlotinib or Gefitinib) is preferred for patients with RCC-RF.
1. Ciccarese C, Massari F, Santoni M, Heng DY, Sotte V, Brunelli M, et al. New molecular targets in non clear renal cell carcinoma: An overview of ongoing clinical trials. Cancer Treat Rev 2015;41(7):614-22.
2. Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol 2015;67(1):85-97.
3. Colin P, Koenig P, Ouzzane A, Berthon N, Villers A, Biserte J, et al. Environmental factors involved in carcinogenesis of urothelial cell carcinomas of the upper urinary tract. BJU Int 2009;104(10):1436-40.
4. Hwang CY, Chen YJ, Lin MW, Chen TJ, Chu SY, Chen CC, et al. Cancer risk in patients with allergic rhinitis, asthma and atopic dermatitis: a nationwide cohort study in Taiwan. Int J Cancer 2012;130(5):1160-7.
5. Chapin BF, Delacroix SE, Jr., Wood CG. Renal cell carcinoma: what the surgeon and treating physician need to know. AJR Am J Roentgenol 2011;196(6):1255-62.
6. Tomlinson GE, Breslow NE, Dome J, Guthrie KA, Norkool P, Li S, et al. Rhabdoid tumor of the kidney in the National Wilms' Tumor Study: age at diagnosis as a prognostic factor. J Clin Oncol 2005;23(30):7641-5.
7. Amrikachi M, Ro JY, Ordonez NG, Ayala AG. Adenocarcinomas of the gastrointestinal tract with prominent rhabdoid features. Ann Diagn Pathol 2002;6(6):357-63.
8. Inagaki T, Nagata M, Kaneko M, Amagai T, Iwakawa M, Watanabe T. Carcinosarcoma with rhabdoid features of the urinary bladder in a 2-year-old girl: possible histogenesis of stem cell origin. Pathology International 2000;50(12):973-8.
9. Kuroda N, Sawada T, Miyazaki E, Hayashi Y, Toi M, Naruse K, et al. Anaplastic carcinoma of the pancreas with rhabdoid features. Pathology International 2000;50(1):57-62.
10. Small EJ, Gordon GJ, Dahms BB. Malignant rhabdoid tumor of the heart in an infant. Cancer 1985;55(12):2850-3.
11. Tamboli P, Toprani TH, Amin MB, Ro JS, Ordonez NG, Ayala AG, et al. Carcinoma of lung with rhabdoid features. Hum Pathol 2004;35(1):8-13.
12. Toprani TH, Tamboli P, Amin MB, Ordonez NG, Ayala AG, Ro JY. Thymic carcinoma with rhabdoid features. Ann Diagn Pathol 2003;7(2):106-11.
13. Ogino S, Ro TY, Redline RW. Malignant rhabdoid tumor: A phenotype? An entity?--A controversy revisited. Adv Anat Pathol 2000;7(3):181-90.
14. Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol 2004;28(5):644-50.
15. Becker PB, Horz W. ATP-dependent nucleosome remodeling. Annu Rev Biochem 2002;71:247-73.
16. Ho L, Crabtree GR. Chromatin remodelling during development. Nature 2010;463(7280):474-84.
17. Donner LR, Wainwright LM, Zhang F, Biegel JA. Mutation of the INI1 gene in composite rhabdoid tumor of the endometrium. Hum Pathol 2007;38(6):935-9.
18. Chai J, Charboneau AL, Betz BL, Weissman BE. Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res 2005;65(22):10192-8.
19. Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D, et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 2002;22(16):5975-88.
20. Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W, et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 2001;21(10):3598-603.
21. Roberts CW, Leroux MM, Fleming MD, Orkin SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002;2(5):415-25.
22. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 2011;35(10):e47-63.
23. Haberler C, Laggner U, Slavc I, Czech T, Ambros IM, Ambros PF, et al. Immunohistochemical analysis of INI1 protein in malignant pediatric CNS tumors: Lack of INI1 in atypical teratoid/rhabdoid tumors and in a fraction of primitive neuroectodermal tumors without rhabdoid phenotype. Am J Surg Pathol 2006;30(11):1462-8.
24. Davis CJ, Jr., Mostofi FK, Sesterhenn IA. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol 1995;19(1):1-11.
25. Hoot AC, Russo P, Judkins AR, Perlman EJ, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 2004;28(11):1485-91.
26. Sigauke E, Rakheja D, Maddox DL, Hladik CL, White CL, Timmons CF, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 2006;19(5):717-25.
27. Cheng JX, Tretiakova M, Gong C, Mandal S, Krausz T, Taxy JB. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol 2008;21(6):647-52.
28. Humphrey PA. Renal cell carcinoma with rhabdoid features. J Urol 2011;186(2):675-6.
29. Rao Q, Xia QY, Shen Q, Shi SS, Tu P, Shi QL, et al. Coexistent loss of INI1 and BRG1 expression in a rhabdoid renal cell carcinoma (RCC): implications for a possible role of SWI/SNF complex in the pathogenesis of RCC. Int J Clin Exp Pathol 2014;7(4):1782-7.
30. Weeks DA, Beckwith JB, Mierau GW, Zuppan CW. Renal neoplasms mimicking rhabdoid tumor of kidney. A report from the National Wilms' Tumor Study Pathology Center. Am J Surg Pathol 1991;15(11):1042-54.
31. Gokden N, Nappi O, Swanson PE, Pfeifer JD, Vollmer RT, Wick MR, et al. Renal cell carcinoma with rhabdoid features. Am J Surg Pathol 2000;24(10):1329-38.
32. Leroy X, Zini L, Buob D, Ballereau C, Villers A, Aubert S. Renal cell carcinoma with rhabdoid features: an aggressive neoplasm with overexpression of p53. Arch Pathol Lab Med 2007;131(1):102-6.
33. Kapoor A, Tutino R, Kanaroglou A, Hotte SJ. Treatment of adult rhabdoid renal cell carcinoma with sorafenib. Can Urol Assoc J 2008;2(6):631-4.
34. Al-Saidi NA, Akhtar M. Sarcomatoid renal cell carcinoma with rhabdoid features. Ann Saudi Med 2013;33(5):495-9.
35. Esnakula AK, Naab TJ, Green W, Shokrani B. Extensive peritoneal carcinomatosis secondary to renal cell carcinoma with sarcomatoid and rhabdoid differentiation. BMJ Case Rep 2013;2013.
36. Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol 2013;37(10):1490-504.
37. Shannon B, Stan Wisniewski Z, Bentel J, Cohen RJ. Adult rhabdoid renal cell carcinoma. Arch Pathol Lab Med 2002;126(12):1506-10.
38. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012;44(7):751-9.
39. Kats-Ugurlu G, Maass C, van Herpen C, de Waal R, Oosterwijk E, Mulders P, et al. Better effect of sorafenib on the rhabdoid component of a clear cell renal cell carcinoma owing to its higher level of vascular endothelial growth factor-A production. Histopathology 2011;59(3):562-4.
40. Karashima T, Fukuhara H, Tamura K, Ashida S, Kamada M, Inoue K, et al. Expression of angiogenesis-related gene profiles and development of resistance to tyrosine-kinase inhibitor in advanced renal cell carcinoma: characterization of sorafenib-resistant cells derived from a cutaneous metastasis. Int J Urol 2013;20(9):923-30.
41. Regan JW. EP2 and EP4 prostanoid receptor signaling. Life Sci 2003;74(2-3):143-53.
42. Pelayo JC, Shanley PF. Glomerular and tubular adaptive responses to acute nephron loss in the rat. Effect of prostaglandin synthesis inhibition. Journal of Clinical Investigation 1990;85(6):1761-69.
43. Long CR, Kinoshita Y, Knox FG. Prostaglandin E2 induced changes in renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandins 1990;40(6):591-601.
44. Breyer MD, Zhang Y, Guan YF, Hao CM, Hebert RL, Breyer RM. Regulation of renal function by prostaglandin E receptors. Kidney Int Suppl 1998;67:S88-94.
45. Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol 1996;270(3 Pt 1):G393-400.
46. Maier JA, Hla T, Maciag T. Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. J Biol Chem 1990;265(19):10805-8.
47. DuBois RN, Awad J, Morrow J, Roberts LJ, 2nd, Bishop PR. Regulation of eicosanoid production and mitogenesis in rat intestinal epithelial cells by transforming growth factor-alpha and phorbol ester. J Clin Invest 1994;93(2):493-8.
48. Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999;18(55):7908-16.
49. Harris RC, Breyer MD. Physiological regulation of cyclooxygenase-2 in the kidney. Am J Physiol Renal Physiol 2001;281(1):F1-11.
50. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103(2):211-25.
51. Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 2001;20(13):1661-8.
52. Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 2001;20(13):1594-600.
53. Fischer OM, Hart S, Gschwind A, Ullrich A. EGFR signal transactivation in cancer cells. Biochem Soc Trans 2003;31(Pt 6):1203-8.
54. Pai R1 SB, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 2002;8(3):289-93.
55. Han C, Michalopoulos GK, Wu T. Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol 2006;207(1):261-70.
56. Thomas SM, Bhola NE, Zhang Q, Contrucci SC, Wentzel AL, Freilino ML, et al. Cross-talk between G protein-coupled receptor and epidermal growth factor receptor signaling pathways contributes to growth and invasion of head and neck squamous cell carcinoma. Cancer Res 2006;66(24):11831-9.
57. Jain S, Chakraborty G, Raja R, Kale S, Kundu GC. Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res 2008;68(19):7750-9.
58. Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 2003;278(37):35451-7.
59. Fan TP, Jaggar R, Bicknell R. Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci 1995;16(2):57-66.
60. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci 1997;22(7):251-6.
61. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18(1):4-25.
62. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010;464(7290):917-21.
63. Dai X, Wang W, Shen-Tu Y, Zhang J. [Expression and prognostic value of VEGF-C and lymphangeogenesis in lung adenocarcinoma and squamous cell carcinoma]. Zhongguo Fei Ai Za Zhi 2011;14(10):774-9.
64. Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett 2006;580(12):2879-87.
65. Adini A, Kornaga T, Firoozbakht F, Benjamin LE. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res 2002;62(10):2749-52.
66. Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011;8(4):210-21.
67. Timoshenko AV, Chakraborty C, Wagner GF, Lala PK. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer 2006;94(8):1154-63.
68. Timoshenko AV, Rastogi S, Lala PK. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells. Br J Cancer 2007;97(8):1090-8.
69. Fitzgerald GA. Coxibs and cardiovascular disease. N Engl J Med 2004;351(17):1709-11.
70. Graham DJ. COX-2 inhibitors, other NSAIDs, and cardiovascular risk: the seduction of common sense. Jama 2006;296(13):1653-6.
71. Su JL, Shih JY, Yen ML, Jeng YM, Chang CC, Hsieh CY, et al. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res 2004;64(2):554-64.
72. Liu H, Xiao J, Yang Y, Liu Y, Ma R, Li Y, et al. COX-2 expression is correlated with VEGF-C, lymphangiogenesis and lymph node metastasis in human cervical cancer. Microvasc Res 2011;82(2):131-40.
73. Allory Y, Culine S, de la Taille A. Kidney cancer pathology in the new context of targeted therapy. Pathobiology 2011;78(2):90-8.
74. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18(16):1926-45.
75. Heberle AM, Prentzell MT, van Eunen K, Bakker BM, Grellscheid SN, Thedieck K. Molecular mechanisms of mTOR regulation by stress. Molecular & Cellular Oncology 2015;2(2):e970489.
76. Khan MW, Biswas D, Ghosh M, Mandloi S, Chakrabarti S, Chakrabarti P. mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discovery 2015;1:15016.
77. Rini BI. VEGF-targeted therapy in metastatic renal cell carcinoma. Oncologist 2005;10(3):191-7.
78. Grunwald V, Seidel C, Fenner M, Ganser A, Busch J, Weikert S. Treatment of everolimus-resistant metastatic renal cell carcinoma with VEGF-targeted therapies. Br J Cancer 2011;105(11):1635-9.
79. Anandappa G, Hollingdale A, Eisen T. Everolimus - a new approach in the treatment of renal cell carcinoma. Cancer Manag Res 2010;2:61-70.
80. Negrier S, Raymond E. Antiangiogenic treatments and mechanisms of action in renal cell carcinoma. Invest New Drugs 2011.
81. Heng DY, Bukowski RM. Anti-angiogenic targets in the treatment of advanced renal cell carcinoma. Curr Cancer Drug Targets 2008;8(8):676-82.
82. Yeh CY, Shin SM, Yeh HH, Wu TJ, Shin JW, Chang TY, et al. Transcriptional activation of the Axl and PDGFR-alpha by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer 2011;11:139.
83. De Vincenzo F, Zucali PA, Ceresoli GL, Colombo P, Simonelli M, Lorenzi E, et al. Response to sunitinib in an adult patient with rhabdoid renal cell carcinoma. J Clin Oncol 2011;29(18):e529-31.
84. Ding YB, Shi RH, Tong JD, Li XY, Zhang GX, Xiao WM, et al. PGE2 up-regulates vascular endothelial growth factor expression in MKN28 gastric cancer cells via epidermal growth factor receptor signaling system. Exp Oncol 2005;27(2):108-13.
85. Fernandez-Martinez AB, Lucio Cazana FJ. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-beta up-regulation. Biochim Biophys Acta 2013;1833(9):2029-38.
86. Kuroiwa K, Kinoshita Y, Shiratsuchi H, Oshiro Y, Tamiya S, Oda Y, et al. Renal cell carcinoma with rhabdoid features: an aggressive neoplasm. Histopathology 2002;41(6):538-48.
87. Daste A, Grellety T, Gross-Goupil M, Ravaud A. Protein kinase inhibitors in renal cell carcinoma. Expert Opin Pharmacother 2014;15(3):337-51.
88. Kim M, Yan Y, Lee K, Sgagias M, Cowan KH. Ectopic expression of von Hippel-Lindau tumor suppressor induces apoptosis in 786-O renal cell carcinoma cells and regresses tumor growth of 786-O cells in nude mouse. Biochem Biophys Res Commun 2004;320(3):945-50.
校內:2021-01-30公開