| 研究生: |
林昶榕 Lin, Chang-Rong |
|---|---|
| 論文名稱: |
環境DNA在伏流水區移動之分析 Analysis of Environmental DNA Movement in the Hyporheic Zone |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 環境DNA 、伏流水 、上湧 、下滲 、運輸 |
| 外文關鍵詞: | environmental DNA, subsurface water, upwelling, downwelling |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微測壓管方法與eDNA分子生物學技術,希望能夠了解伏流水層其上湧、下滲特性對於eDNA運輸的機制的影響,假設在下滲區域因其下滲特性會將eDNA分子帶進伏流水層,所以eDNA濃度相對來說應該會比較高,反之,上湧區域因其上湧特性將水流從伏流水層流入溪流會使顆粒不易沉降,所以eDNA濃度應該會比較低;eDNA技術可用來監測水域生態系統中生物,但是eDNA在運輸過程中會受到許多因素影響,例如:光照、pH值等環境因子、河床底質以及流態變化,所以了解影響流動水中eDNA運輸過程的物理和生物變量至關重要。
釋放實驗的結果佐證了eDNA的特性,其異質性與多分散性,會導致eDNA在水中的動力學像是顆粒的表現,在水中並非呈現均勻分佈的情形,運輸過程中因為其尺寸範圍跨越大,所以不會表現出一致的運輸模式。表面水的eDNA濃度變化大,雖然研究區域的範圍小以及其流量並非太大,但是其地形與底質造成的流態變化強烈影響eDNA在表面水的運輸,所以預先了解流態的變化,應該能增進對於理解eDNA在溪流中的運輸機制。從結果得知伏流水與表面水的eDNA濃度比值約為0 ~ 20 %,若是不考慮再懸浮,那應該可以設定為每個時間段eDNA濃度會被保留的比例;另一方面,從結果得知上湧、下滲區域特性對於進入伏流水層eDNA濃度,與原假設相反,反而在上湧區域的伏流水eDNA濃度皆大於下滲區域的eDNA濃度,但最大的原因可能是其流態的變化影響。
In this study, we tried to understand the influence of the upwelling and downwelling in the hyporheic zone on the transport of eDNA. It was assumed that eDNA molecules would infiltrate into the hyporheic zone due to downwelling, so eDNA concentration in the hyporheic zone should be relatively high. On the contrary, the water in upwelling zone would bring up water from the hyporheic zone into the stream, therefore, eDNA particles would not be easily deposited on the riverbed and the concentration of eDNA should be relatively low compared to the downwelling site. The results showed that the characteristics of eDNA concentration in the upwelling and downwelling regions were opposite to the original hypothesis that the eDNA concentration would be high in the hyporheic zone. The concentration of eDNA in the upwelling region was greater than in the downwelling region. The concentration of eDNA in the stream was also compared to that in the hyporheic zone. The ratio of eDNA concentration in hyporheic zone to that in the stream was about 0 to 20%. Changes in flow pattern might be caused by the topography, and the substrate strongly influence the transport of eDNA on surface water. Changes in flow pattern should be known in advance to prevent the uncertainity in the understanding of eDNA transport in the stream.
Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296(5575), 1985-1990.
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1-17.
Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D. M. (2014). Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol, 48(3), 1819-1827.
Baxter, C. V., Hauer, F. R., & Woessner, W. W. (2003). Measuring groundwater-stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502.
Bencala, K. E. (2000). Hyporheic zone hydrological processes. Hydrological Processes, 14(15), 2797-2798.
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., . . . De Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29(6), 358-367.
Buxton, A. S., Groombridge, J. J., & Griffiths, R. A. (2018). Seasonal variation in environmental DNA detection in sediment and water samples. Plos One, 13(1).
Darcy, H. P. G. (1856). Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau, etc: V. Dalamont.
Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T., & Minamoto, T. (2017). Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62(1), 30-39.
Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., & Lodge, D. M. (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology, 53(3), 722-732.
Drummond, J. D., Aubeneau, A. F., & Packman, A. I. (2014). Stochastic modeling of fine particulate organic carbon dynamics in rivers. Water Resources Research, 50(5), 4341-4356.
Eichmiller, J. J., Best, S. a. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science & Technology, 50(4), 1859-1867.
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Molecular Ecology Resources, 16(1), 56-68.
Foote, A. D., Thomsen, P. F., Sveegaard, S., Wahlberg, M., Kielgast, J., Kyhn, L. A., . . . Gilbert, M. T. P. (2012). Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. Plos One, 7(8), e41781.
Franken, R. J. M., Storey, R. G., & Williams, D. D. (2001). Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444(1-3), 183-195.
Goldberg, C. S., Strickler, K. M., & Fremier, A. K. (2018). Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: increasing efficacy of sampling designs. Science of the Total Environment, 633, 695-703.
Hanrahan, T. P. (2008). Effects of river discharge on hyporheic exchange flows in salmon spawning areas of a large gravel-bed river. Hydrological Processes, 22(1), 127-141.
Iwai, N., Yasumiba, K., & Takahara, T. (2019). Efficacy of environmental DNA to detect and quantify stream tadpoles of Odorrana splendida. Royal Society Open Science, 6(1).
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., . . . Whiteley, A. R. (2015). Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Molecular Ecology Resources, 15(1), 216-227.
Jerde, C. L., Olds, B. P., Shogren, A. J., Andruszkiewicz, E. A., Mahon, A. R., Bolster, D., & Tank, J. L. (2016). Influence of stream bottom substrate on retention and transport of vertebrate environmental DNA. Environmental Science & Technology, 50(16), 8770-8779.
Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015). Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biological Conservation, 183, 77-84.
Lacoursiere-Roussel, A., Cote, G., Leclerc, V., & Bernatchez, L. (2016). Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology, 53(4), 1148-1157.
Malard, F., Dole-Olivier, M., Mathieu, J., & Stoch, F. (2002). Sampling manual for the assessment of regional groundwater biodiversity. Protocols for the Assessment and Conservation of Aquatic Life in the Subsurface (PASCALIS), http://www. pascalis-project. com/results/samplingmanual. html.
Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M., & Minamoto, T. (2014). The release rate of environmental DNA from juvenile and adult fish. Plos One, 9(12), e114639.
Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P., & Amberg, J. J. (2014). Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data. Plos One, 9(11).
Nukazawa, K., Hamasuna, Y., & Suzuki, Y. (2018). Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River. Environmental Science & Technology, 52(18), 10562-10570.
Olsen, D. A., & Townsend, C. R. (2003). Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology, 48(8), 1363-1378.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources, 14(1), 109-116.
Renan, S., Gafny, S., Perl, R. B., Roll, U., Malka, Y., Vences, M., & Geffen, E. (2017). Living quarters of a living fossil—Uncovering the current distribution pattern of the rediscovered Hula painted frog (Latonia nigriventer) using environmental DNA. Molecular Ecology, 26(24), 6801-6812.
Sansom, B. J., & Sassoubre, L. M. (2017). Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environmental Science & Technology, 51(24), 14244-14253.
Shogren, A. J., Tank, J. L., Andruszkiewicz, E., Olds, B., Mahon, A. R., Jerde, C. L., & Bolster, D. (2017). Controls on eDNA movement in streams: Transport, retention, and resuspension. Scientific Reports, 7(1), 5065.
Shogren, A. J., Tank, J. L., Andruszkiewicz, E. A., Olds, B., Jerde, C., & Bolster, D. (2016). Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. Journal of the Royal Society Interface, 13(119), 20160290.
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J., Hanrahan, B. R., . . . Bolster, D. (2018). Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. Environmental Science & Technology, 52(15), 8530-8537.
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92.
Thomsen, P. F., Kielgast, J., Iversen, L. L., Moller, P. R., Rasmussen, M., & Willerslev, E. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. Plos One, 7(8).
Tillotson, M. D., Kelly, R. P., Duda, J. J., Hoy, M., Kralj, J., & Quinn, T. P. (2018). Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biological Conservation, 220, 1-11.
Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93-102.
Valett, H. M., Fisher, S. G., & Stanley, E. H. (1990). PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE HYPORHEIC ZONE OF A SONORAN DESERT STREAM. Journal of the North American Benthological Society, 9(3), 201-215.
White, D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61-69.
Wyatt, K. H., Hauer, F. R., & Pessoney, G. F. (2008). Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607, 151-161.
林于玄. (2016). 應用微測壓管改良伏流水估算之水力傳導係數. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/76v597
侯晨昕. (2015). 建立一環境DNA偵測技術用於調查小盾鱧與環境參數之關係-以曾文水庫為例. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/j449q7
凃棋元. (2017). 環境DNA(eDNA)在靜水環境中之移動. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/df5c2y
郭俊廷. (2015). 伏流水與環境因子對底棲型鰕虎產卵之影響─以五溝水湧泉濕地為例. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/h539gz
陳柳豪. (2016). 水文現象與環境參數影響eDNA偵測技術之探討. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/ygg54r
游志弘. (2014). 地表逕流與伏流水交換對水質特性相關性之探討. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/jgn67t
鄭智羽. (2017). 利用野外調查配合數值模擬探討伏流水層上湧下滲之分佈. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/a2f7uf