研究生: |
林志陽 Lin, Chin-Yang |
---|---|
論文名稱: |
具高分子駐極體之有機場效記憶體元件的研究 The study of organic field-effect transistor based memory devices with polymeric electrets |
指導教授: |
周維揚
Chou, Wei-Yang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 烷基駢苯衍生物 、有機非揮發性記憶體 |
外文關鍵詞: | non-volatile memory devices, trapping layer, memory window, polyimide |
相關次數: | 點閱:91 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究不同的高分子駐極體當作載子捕捉層來分別探討聚亞醯胺(Polyimide,PI)掺雜TiO2 奈米粒子和改變PI的側鏈結構密度對有機場效記憶體元件的電性及記憶效應影響,主動層使用本實驗室自行合成之N型半導體材料十三烷基駢苯衍生物(N,N’-ditridecy1-3,4,9,10-perylenetetracarboxylic diimide, PTCDI-C13H27)製作成N型記憶體元件。本研究分成二個大部份:第一部份為探討不同濃度的TiO2 奈米粒子掺雜於PI作為載子捕捉層對N型記憶體元件的電流輸出特性與記憶體效應之影響。第二部份為利用高分子駐極體PI具有不同密度的側鏈結構與不具側鏈的PI(型號為DA9000A)當作載子捕捉層,探討PI的側鏈結構對PTCDI-C13H27記憶體元件效能的影響。
第一部份:探討掺雜不同濃度的TiO2奈米粒子於高分子駐極體對有機N型記憶體元件的影響。本實驗所使用高分子駐極體材料為聚亞醯胺(Polyimide, PI, 型號為DA7013),使用三種摻混比例形成PI- TiO2 複合膜:(a)無掺雜之PI-DA7013、(b)掺雜5 wt% TiO2 奈米粒子與(c)掺雜20wt% TiO2 奈米粒子,經由電晶體輸出特性曲線結果顯示出,隨著TiO2 奈米粒子掺雜比例的提昇,其記憶窗口(Memory window)大小也有著相同的增加趨勢,亦即可透過此方法提升介電層的載子捕捉量。由於記憶窗口的定義是用寫入電壓後的臨界電壓(threshold voltage, Vt )減掉清除電壓後的臨界電壓(Vt ),故選擇最適當的比例去混合掺雜,將可以得到最大的記憶窗口。
第二部份:探討高分子駐極體PI不同的側鏈比例結構對PTCDI-C13H27電晶體的電性影響,使用三種PI的側鏈比例分別為PI-1B (20% side chain)、PI-2B (10 % side chain)與PI-3B (6% side chain),這三種高分子駐極體材料的主鏈結構與DA9000A相同,由於DA9000A不具有側鏈,所以缺乏捕捉載子的能力,由實驗數據我們可清楚看到當側鏈比例由多到少時,它的電流大小會依序下降,但是相對它的記憶體會變大,可以看出當側鏈比例只有6%時,其記憶窗口大小約為14.11伏(V),但是DA9000A沒有側鏈結構反而導致完全無記憶體的特性,故本實驗利用不同側鏈結構比例的PI當載子捕捉層可獲知調整適當的駐極體側鏈比例可使有機薄膜電晶體得到良好的記憶窗口。
This thesis discusses N-type memory devices with various charge trapping layers. N,N’-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27) and polyimide (PI) are used as the active and the charge trapping materials in the fabrication of organic non-volatile memory devices. The surface properties of charge trapping layers made a great impact on electrical properties of memory devices.
First, TiO2 nanoparticles (NPs) were doped into the PI to role as the charge trapping material in N-type organic memory devices. In the experiment, three type PIs with different concentrations of TiO2 NPs, namely (a) DA7013 (pure PI), (b) DA7013 with 5 wt% TiO2 NPs, and (c) DA7013 with 20 wt% TiO2 NPs, were used. It was found that the memory window of the devices increased with increasing with the concentration of TiO2 NPs. Therefore, the memory window can be controlled by varying the concentration of TiO2 NPs.
Second, another three type PIs with different side chain densities, namely PI-1B (20% side chain), PI-2B (10% side chain), PI-3B (6% side chain),and DA9000A without side chain, were used as trapping material to study the influence of the side chain density on the memory window. The main chain of these PIs with side chain is the same as that of DA9000A. Interestingly, on memory widow was observed in the DA9000A-based device owing to its lack of the ability of capturing carriers by the side chain. In the experiment, the effect of carriers captured by the side chain of PI was studied clearly.
[1] D. Kahng, and S. M Sze, “A floating gate and its application tomemory devices”, IEEE Trans. Electron Devices, 14, 629, 1967.
[2]S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers”,Appl. Phys. Lett., 96, 033302, 2010.
[3]S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulovi´c,“Performance comparison of different organic molecular floating-gate memories”,IEEE Trans. on Nanotechnology, 10, 594, 2011.
[4] J. D. Blauwe, “Nanocrystal nonvolatile memory fevices”, IEEE Trans. on Nanotechnology, 1, 72, 2002.
[5] M. H White, D.A. Adams, and J. Bu, “ On the go with SONOS “, Circuits and Devices Lett., 22, 17, 2001.
[6] J. Bu, and M. H. White, “Effects of two-step high temperature deuterium annealson SONOS nonvolatile memory devices “, IEEE Electron Device Lett., 22, 17, 2001.
[7] K. T. Chang, W.M. Chen, C. Swift, J. M. Higman, W. M. Paulson, and K. M.Chang, “A new SONOS memory using source-side injection for programming “, IEEE Electron Device Lett., 19, 253, 1998
[8] P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King, “FinFET sonos flash memory for embedded applications”, IEDM Tech. Dig.,609, 2003.
[9] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “ Novel multi-bit SONOS type flash memory using a high-k charge trapping layer “, VLSI Symp. Tech. Dig.27, 2003.
[10] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel Localized trapping, 2-bit non-volatile memory cell “, IEEE Electron Device Lett., 21, 543, 2000.
[11] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—Part I: device design and fabrication”, IEEE Trans. on Electron Devices, 49, 1606, 2002.
[12] T. H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “ Design optimization of metal nanocrystal memory- Part I: nanocrystal array engineering “, IEEE Trans. Electron devices, 53, 3095, 2006.
[13] J.J. Lee, and D. –L. Kwong, “Metal Nano-crystal Memory with High-K Tunneling Barrier for Improved Data Retention “, IEEE Trans. Electron Devices, 52, 507, 2005.
[14] S.Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, C Kim, “ Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications “, Appl. Phys. Lett., 86, 123110, 2005
[15] S. Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, and C Kim, “ Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications ”, Appl. Phys. Lett., 86, 123110, 2005.
[16] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “ Nonvolatile Si quantum memory with self-aligned doubly-stacked dots ”, IEEE Trans. Electron Devices, 49, 1392, 2002.
[17] T. Baron, B. Pellissier, L. Perniola, F. Mazen, J. M. Hartmann, and G. Polland, “ Chemical vapor deposition of Ge nanocrystals on SiO2 ”, Appl. Phys. Lett., 83, 1444, 2003.
[18] Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, “ Structural and electrical characteristics of Ge nanoclusters embedded in Al O gate dielectric ”, Appl. Phys. Lett., 82, 4708, 2003.
[19] C. Y. Ng, T. P. Chen, L. Ding, and S. Fung, “ Memory Characteristics of MOSFETs With Densely Stacked Silicon Nanocrystal Layers in the Gate Oxide Synthesized by Low-Energy Ion Beam ”, IEEE Electron Device Lett., 27, 231, 2006.
[20] R. Waser, “ Resistive non-volatile memory devices (Invited Paper) ”, Microelectronic Engineering, 86, 1925, 2009.
[21] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “ Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application ”, Nano Lett., 9, 1636, 2009.
[22] Y. W. Dong, X. Ji, W. Xu, J. Q. Tang, and P. Guo, “ Resistive Switching and Memory Effect Based on CuSCN Complex Layer Created Through Interface Reactions ”, Electrochem. Solid State Lett., 12, H54, 2009.
[23] F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “ Nonvolatile resistive switching memory based on amorphous carbon ”, Appl. Phys. Lett., 96, 163505, 2010.
[24] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “ Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology ”, Adv. Funct. Mater., 15, 1617, 2005.
[25] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “ Bulk heterojunction solar cells with internal quantum efficiency approaching 100% ”, Nat. Photonics, 3, 297, 2009.
[26] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “ Light-emitting diodes based on conjugated polymers ”, Nature, 347, 539, 1990.
[27] M. Ichimura, S. H. No, T. Ishibashi, N. Ueda, and S. Tamura, “ High performance OLED panels for Sony CLIE PDA: development of red emitter and super top emission structure ”, Proceedings of the SPIE, 5937, 593703, 2005.
[28] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “ Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance ”, Appl. Phys. Lett., 88, 162109, 2006.
[29] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “ Ultralow-power organic complementary circuits ”, Nature, 445, 745, 2007.
[30] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “ Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers ”, Appl. Phys. Lett., 96, 33302, 2010.
[31] Y. M. Kim, Y. S. Park, A. O’Reilly, and J. S. Lee, “ Organic Field-Effect Transistor-Based Nonvolatile Memory Devices Having Controlled Metallic Nanoparticle/Polymer Composite Layers ”, Electrochem. Solid State Lett., 13, H134, 2010.
[32] L. P. Ma, J. Liu, and Y. Yang, “ Organic electrical bistable devices and rewritable memory cells ”, Appl. Phys. Lett., 80, 2997, 2002.
[33] J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “ Programmable polymer thin film and non-volatile memory device ”, Nat. Mater., 3, 918, 2004.
[34] C. R. Kagan, and P. Andry, “ Thin-Film Transistors ”, Marcel Dekker INC, 2003.
[35] S.M. Sze, “ Semiconductor Devices Physics and Technology 2nd edition ”, John Wiley & Sons INC., 2001.
[36] M. A. Lampert, “ Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps ”, Physical Review, 103, 1648, 1956.
[37] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, “ Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret ”, Adv. Mater., 18, 3179, 2006.
[38] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “ Flash Memory Cells-An Overview ”, Proceedings of The IEEE, 85, 1248, 1997.
[39] S. Paydavosi, H. Abdu, G. J. Supran,andV. Bulović, “Bulovic performance comparison of different organic molecular floating gate memories”, IEEE Trans. on Nanotechnology, 10, 594, 2011.
[40] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, “Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory”, Adv. Func. Mater., 18, 3678, 2008.
[41] L. Zhen,W. Guan, L. Shang, M. Liu,and G. Liu,“Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric”, Journal of Physics D: App. Phys., 41, 135111, 2008.
[42] W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen,S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, “Non-volatile organic memory applications enabled by In situ synthesis of gold nanoparticles in a self-assembled block copolymer”,Adv. Mater., 20, 2325, 2008.
[43] S.Wang, C. W. Leung, P. K.L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles”,Organic Electronics, 11, 990, 2010.
[44] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze and M. C. Petty, “A pentacene-based organic thin film memory transistor”, Appl. Phys. Lett., 94, 173302, 2009.
[45] B. L Yeh, Y H. Chen, L. Y. Chiu, J. W. Lin, W. Y. Chen, J. S.Chen,T. H. Chou, W. Y. Chou, F. C. Tang and, H. L. Cheng, “Organicnonvolatile memory based on low voltage organic thin film transistors with polymer gate electrets”,Journal of The Electrochemical Society, 158, 277, 2011.
[46] L. Shang, Z. Ji, H. Wang, Y. Chen, X. Liu, M. Han, and M. Liu, “Low-voltage multilevel memory based on organic thin-film transistor”,IEEE Electron Device Lett., 32, 1451, 2011.
[47] K. H. Lee, G. Lee, K. Lee, M. S. Oh, and Seongil Im, “Flexible low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer”, App. Phys. Lett., 94, 093304, 2009.
[48] R. C. Naber, B. de Boer, P. W. Blom, and D. M. de Leeuw, “Low-voltage polymer field-effect transistors for nonvolatile memories”,Appl. Phys. Lett., 87, 203509 , 2005.
[49] K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center”, Organic Electronics, 10, 48, 2009.
[50] S. J. Kim, and J. S. Lee, “Flexible organic transistor memory devices”, NANO Letters, 10, 2884, 2010.
[51] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “A flexible organic pentacene nonvolatile memory based on high-κ dielectric layers”, Appl. Phys. Lett., 93, 233302, 2008.
[52] L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu,D. S. Hhung Chan, E.T. Kang, K. G. Neoh, “A flexible polymer memory device”, Organic Elec- tronics, 8, 401, 2007.
[53] S. J. Kim, J. M. Song, and J. S. Lee, “Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates”, J. Mater. Chem., 21, 14516, 2011.
[54] Y. S. Park, S. Chung, S. J. Kim, S. H. Lyu, J. W. Jang, S. K. Kwon,Y. Hong, and J. S. Lee, “High-performance organic charge trap flash memory devices based on ink-jet printed 6,13-bis, triisopropylsilylethynylpentacene transistors”, Appl. Phys. Lett., 96, 213107 , 2010.
[55] S. M. Wang, C. W. Leung, and P. K. L. Chan,“Nonvolatile organic transistor-memory devices using various thicknesses of silver nanoparticle layers”, Appl. Phys. Lett., 97, 023511, 2010.
[56] X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and, P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor”, Appl. Phys. Lett., 99, 043303, 2011.