簡易檢索 / 詳目顯示

研究生: 林志陽
Lin, Chin-Yang
論文名稱: 具高分子駐極體之有機場效記憶體元件的研究
The study of organic field-effect transistor based memory devices with polymeric electrets
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 烷基駢苯衍生物有機非揮發性記憶體
外文關鍵詞: non-volatile memory devices, trapping layer, memory window, polyimide
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究不同的高分子駐極體當作載子捕捉層來分別探討聚亞醯胺(Polyimide,PI)掺雜TiO2 奈米粒子和改變PI的側鏈結構密度對有機場效記憶體元件的電性及記憶效應影響,主動層使用本實驗室自行合成之N型半導體材料十三烷基駢苯衍生物(N,N’-ditridecy1-3,4,9,10-perylenetetracarboxylic diimide, PTCDI-C13H27)製作成N型記憶體元件。本研究分成二個大部份:第一部份為探討不同濃度的TiO2 奈米粒子掺雜於PI作為載子捕捉層對N型記憶體元件的電流輸出特性與記憶體效應之影響。第二部份為利用高分子駐極體PI具有不同密度的側鏈結構與不具側鏈的PI(型號為DA9000A)當作載子捕捉層,探討PI的側鏈結構對PTCDI-C13H27記憶體元件效能的影響。
    第一部份:探討掺雜不同濃度的TiO2奈米粒子於高分子駐極體對有機N型記憶體元件的影響。本實驗所使用高分子駐極體材料為聚亞醯胺(Polyimide, PI, 型號為DA7013),使用三種摻混比例形成PI- TiO2 複合膜:(a)無掺雜之PI-DA7013、(b)掺雜5 wt% TiO2 奈米粒子與(c)掺雜20wt% TiO2 奈米粒子,經由電晶體輸出特性曲線結果顯示出,隨著TiO2 奈米粒子掺雜比例的提昇,其記憶窗口(Memory window)大小也有著相同的增加趨勢,亦即可透過此方法提升介電層的載子捕捉量。由於記憶窗口的定義是用寫入電壓後的臨界電壓(threshold voltage, Vt )減掉清除電壓後的臨界電壓(Vt ),故選擇最適當的比例去混合掺雜,將可以得到最大的記憶窗口。
    第二部份:探討高分子駐極體PI不同的側鏈比例結構對PTCDI-C13H27電晶體的電性影響,使用三種PI的側鏈比例分別為PI-1B (20% side chain)、PI-2B (10 % side chain)與PI-3B (6% side chain),這三種高分子駐極體材料的主鏈結構與DA9000A相同,由於DA9000A不具有側鏈,所以缺乏捕捉載子的能力,由實驗數據我們可清楚看到當側鏈比例由多到少時,它的電流大小會依序下降,但是相對它的記憶體會變大,可以看出當側鏈比例只有6%時,其記憶窗口大小約為14.11伏(V),但是DA9000A沒有側鏈結構反而導致完全無記憶體的特性,故本實驗利用不同側鏈結構比例的PI當載子捕捉層可獲知調整適當的駐極體側鏈比例可使有機薄膜電晶體得到良好的記憶窗口。

    This thesis discusses N-type memory devices with various charge trapping layers. N,N’-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27) and polyimide (PI) are used as the active and the charge trapping materials in the fabrication of organic non-volatile memory devices. The surface properties of charge trapping layers made a great impact on electrical properties of memory devices.
    First, TiO2 nanoparticles (NPs) were doped into the PI to role as the charge trapping material in N-type organic memory devices. In the experiment, three type PIs with different concentrations of TiO2 NPs, namely (a) DA7013 (pure PI), (b) DA7013 with 5 wt% TiO2 NPs, and (c) DA7013 with 20 wt% TiO2 NPs, were used. It was found that the memory window of the devices increased with increasing with the concentration of TiO2 NPs. Therefore, the memory window can be controlled by varying the concentration of TiO2 NPs.
    Second, another three type PIs with different side chain densities, namely PI-1B (20% side chain), PI-2B (10% side chain), PI-3B (6% side chain),and DA9000A without side chain, were used as trapping material to study the influence of the side chain density on the memory window. The main chain of these PIs with side chain is the same as that of DA9000A. Interestingly, on memory widow was observed in the DA9000A-based device owing to its lack of the ability of capturing carriers by the side chain. In the experiment, the effect of carriers captured by the side chain of PI was studied clearly.

    中文摘要 I Abstract III 誌謝......................................................................................................................................V 目錄....................................................................................................................................VI 表目錄 IX 第一章 緒論 1 1-1 非揮發性記憶體簡介 1 1-1-1 懸浮閘結構非揮發性記憶體 1 1-1-2 SONOS結構非揮發性記憶體 2 1-1-3 奈米顆粒結構非揮發性記憶體 3 1-1-4 電阻式記憶體 3 1-2有機非揮發性記憶體發展史 4 1-3研究動機 5 第二章有機薄膜電晶體與記憶元件特性 9 2-1有機薄膜電晶體基本結構 9 2-2有機薄膜電機體操作原理 9 2-3有機薄膜電晶體基本電特性與參數萃取方法 10 2-3-1汲極電流公式 10 2-3-2臨界電壓 11 2-3-3載子遷移率 12 2-3-4電流開關比 12 2-3-5次臨界擺福 12 2-4電容-電壓曲線特性 13 2-5有機非揮發性記憶體元件之操作原理 13 2-5-1記憶體寫入與清除原理 13 2-5-2記憶窗口 15 2-5-3 耐久度 15 2-5-4記憶保持能力(retention) 15 第三章High-K材料應用於有機非揮發式記憶體元件 21 3-1前言 21 3-2實驗材料 22 3-2-1半導體材料 22 3-2-2 高分子修飾層與載子捕捉層 23 3-3 元件製程 24 3-4分析儀器介紹 25 3-5薄膜特性分析 26 3-5-1原子力顯微鏡結果分析 26 3-5-2表面能分析 27 3-5-3 X-Ray繞射分析 27 3-6有機非揮發性記憶體元件電性量測 28 3-6-1記憶窗口 29 3-6-2電容-電壓與導納分析 30 第四章聚亞醯胺應用於有機記憶體元件 57 4-1前言 57 4-2實驗材料 58 4-2-1半導體材料 58 4-2-2高分子修飾層與載子捕捉層 58 4-3 元件製程 58 4-4分析儀器介紹 59 4-5薄膜特性分析 59 4-5-1原子力顯微鏡結果分析 60 4-5-2表面能分析 61 4-5-3 X-Ray繞射分析 61 4-6有機非揮發性記憶體元件電性量測 61 4-6-1記憶窗口 62 4-6-2寫入/清除速度與不同偏壓下的變化 63 4-7有機非揮發性記憶體元件光輔助清除電性量測 64 4-7-1記憶窗口 64 4-7-2記憶窗口和PI側鏈的關係 65 4-7-3電容-電壓與導納分析 66 4-8EFM分析 68 第五章結論 101 5-1實驗結論 101 5-2未來工作 102 參考文獻 105

    [1] D. Kahng, and S. M Sze, “A floating gate and its application tomemory devices”, IEEE Trans. Electron Devices, 14, 629, 1967.

    [2]S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers”,Appl. Phys. Lett., 96, 033302, 2010.

    [3]S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulovi´c,“Performance comparison of different organic molecular floating-gate memories”,IEEE Trans. on Nanotechnology, 10, 594, 2011.

    [4] J. D. Blauwe, “Nanocrystal nonvolatile memory fevices”, IEEE Trans. on Nanotechnology, 1, 72, 2002.

    [5] M. H White, D.A. Adams, and J. Bu, “ On the go with SONOS “, Circuits and Devices Lett., 22, 17, 2001.

    [6] J. Bu, and M. H. White, “Effects of two-step high temperature deuterium annealson SONOS nonvolatile memory devices “, IEEE Electron Device Lett., 22, 17, 2001.

    [7] K. T. Chang, W.M. Chen, C. Swift, J. M. Higman, W. M. Paulson, and K. M.Chang, “A new SONOS memory using source-side injection for programming “, IEEE Electron Device Lett., 19, 253, 1998

    [8] P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King, “FinFET sonos flash memory for embedded applications”, IEDM Tech. Dig.,609, 2003.

    [9] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “ Novel multi-bit SONOS type flash memory using a high-k charge trapping layer “, VLSI Symp. Tech. Dig.27, 2003.

    [10] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel Localized trapping, 2-bit non-volatile memory cell “, IEEE Electron Device Lett., 21, 543, 2000.

    [11] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—Part I: device design and fabrication”, IEEE Trans. on Electron Devices, 49, 1606, 2002.

    [12] T. H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “ Design optimization of metal nanocrystal memory- Part I: nanocrystal array engineering “, IEEE Trans. Electron devices, 53, 3095, 2006.

    [13] J.J. Lee, and D. –L. Kwong, “Metal Nano-crystal Memory with High-K Tunneling Barrier for Improved Data Retention “, IEEE Trans. Electron Devices, 52, 507, 2005.

    [14] S.Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, C Kim, “ Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications “, Appl. Phys. Lett., 86, 123110, 2005

    [15] S. Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, and C Kim, “ Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications ”, Appl. Phys. Lett., 86, 123110, 2005.

    [16] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “ Nonvolatile Si quantum memory with self-aligned doubly-stacked dots ”, IEEE Trans. Electron Devices, 49, 1392, 2002.

    [17] T. Baron, B. Pellissier, L. Perniola, F. Mazen, J. M. Hartmann, and G. Polland, “ Chemical vapor deposition of Ge nanocrystals on SiO2 ”, Appl. Phys. Lett., 83, 1444, 2003.

    [18] Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, “ Structural and electrical characteristics of Ge nanoclusters embedded in Al O gate dielectric ”, Appl. Phys. Lett., 82, 4708, 2003.

    [19] C. Y. Ng, T. P. Chen, L. Ding, and S. Fung, “ Memory Characteristics of MOSFETs With Densely Stacked Silicon Nanocrystal Layers in the Gate Oxide Synthesized by Low-Energy Ion Beam ”, IEEE Electron Device Lett., 27, 231, 2006.

    [20] R. Waser, “ Resistive non-volatile memory devices (Invited Paper) ”, Microelectronic Engineering, 86, 1925, 2009.

    [21] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “ Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application ”, Nano Lett., 9, 1636, 2009.

    [22] Y. W. Dong, X. Ji, W. Xu, J. Q. Tang, and P. Guo, “ Resistive Switching and Memory Effect Based on CuSCN Complex Layer Created Through Interface Reactions ”, Electrochem. Solid State Lett., 12, H54, 2009.

    [23] F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “ Nonvolatile resistive switching memory based on amorphous carbon ”, Appl. Phys. Lett., 96, 163505, 2010.

    [24] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “ Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology ”, Adv. Funct. Mater., 15, 1617, 2005.

    [25] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “ Bulk heterojunction solar cells with internal quantum efficiency approaching 100% ”, Nat. Photonics, 3, 297, 2009.

    [26] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “ Light-emitting diodes based on conjugated polymers ”, Nature, 347, 539, 1990.

    [27] M. Ichimura, S. H. No, T. Ishibashi, N. Ueda, and S. Tamura, “ High performance OLED panels for Sony CLIE PDA: development of red emitter and super top emission structure ”, Proceedings of the SPIE, 5937, 593703, 2005.

    [28] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “ Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance ”, Appl. Phys. Lett., 88, 162109, 2006.

    [29] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “ Ultralow-power organic complementary circuits ”, Nature, 445, 745, 2007.

    [30] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “ Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers ”, Appl. Phys. Lett., 96, 33302, 2010.

    [31] Y. M. Kim, Y. S. Park, A. O’Reilly, and J. S. Lee, “ Organic Field-Effect Transistor-Based Nonvolatile Memory Devices Having Controlled Metallic Nanoparticle/Polymer Composite Layers ”, Electrochem. Solid State Lett., 13, H134, 2010.

    [32] L. P. Ma, J. Liu, and Y. Yang, “ Organic electrical bistable devices and rewritable memory cells ”, Appl. Phys. Lett., 80, 2997, 2002.

    [33] J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “ Programmable polymer thin film and non-volatile memory device ”, Nat. Mater., 3, 918, 2004.

    [34] C. R. Kagan, and P. Andry, “ Thin-Film Transistors ”, Marcel Dekker INC, 2003.

    [35] S.M. Sze, “ Semiconductor Devices Physics and Technology 2nd edition ”, John Wiley & Sons INC., 2001.

    [36] M. A. Lampert, “ Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps ”, Physical Review, 103, 1648, 1956.

    [37] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, “ Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret ”, Adv. Mater., 18, 3179, 2006.

    [38] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “ Flash Memory Cells-An Overview ”, Proceedings of The IEEE, 85, 1248, 1997.

    [39] S. Paydavosi, H. Abdu, G. J. Supran,andV. Bulović, “Bulovic performance comparison of different organic molecular floating gate memories”, IEEE Trans. on Nanotechnology, 10, 594, 2011.

    [40] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, “Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory”, Adv. Func. Mater., 18, 3678, 2008.

    [41] L. Zhen,W. Guan, L. Shang, M. Liu,and G. Liu,“Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric”, Journal of Physics D: App. Phys., 41, 135111, 2008.

    [42] W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen,S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, “Non-volatile organic memory applications enabled by In situ synthesis of gold nanoparticles in a self-assembled block copolymer”,Adv. Mater., 20, 2325, 2008.

    [43] S.Wang, C. W. Leung, P. K.L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles”,Organic Electronics, 11, 990, 2010.

    [44] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze and M. C. Petty, “A pentacene-based organic thin film memory transistor”, Appl. Phys. Lett., 94, 173302, 2009.

    [45] B. L Yeh, Y H. Chen, L. Y. Chiu, J. W. Lin, W. Y. Chen, J. S.Chen,T. H. Chou, W. Y. Chou, F. C. Tang and, H. L. Cheng, “Organicnonvolatile memory based on low voltage organic thin film transistors with polymer gate electrets”,Journal of The Electrochemical Society, 158, 277, 2011.

    [46] L. Shang, Z. Ji, H. Wang, Y. Chen, X. Liu, M. Han, and M. Liu, “Low-voltage multilevel memory based on organic thin-film transistor”,IEEE Electron Device Lett., 32, 1451, 2011.

    [47] K. H. Lee, G. Lee, K. Lee, M. S. Oh, and Seongil Im, “Flexible low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer”, App. Phys. Lett., 94, 093304, 2009.

    [48] R. C. Naber, B. de Boer, P. W. Blom, and D. M. de Leeuw, “Low-voltage polymer field-effect transistors for nonvolatile memories”,Appl. Phys. Lett., 87, 203509 , 2005.

    [49] K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center”, Organic Electronics, 10, 48, 2009.

    [50] S. J. Kim, and J. S. Lee, “Flexible organic transistor memory devices”, NANO Letters, 10, 2884, 2010.

    [51] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “A flexible organic pentacene nonvolatile memory based on high-κ dielectric layers”, Appl. Phys. Lett., 93, 233302, 2008.

    [52] L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu,D. S. Hhung Chan, E.T. Kang, K. G. Neoh, “A flexible polymer memory device”, Organic Elec- tronics, 8, 401, 2007.

    [53] S. J. Kim, J. M. Song, and J. S. Lee, “Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates”, J. Mater. Chem., 21, 14516, 2011.

    [54] Y. S. Park, S. Chung, S. J. Kim, S. H. Lyu, J. W. Jang, S. K. Kwon,Y. Hong, and J. S. Lee, “High-performance organic charge trap flash memory devices based on ink-jet printed 6,13-bis, triisopropylsilylethynylpentacene transistors”, Appl. Phys. Lett., 96, 213107 , 2010.

    [55] S. M. Wang, C. W. Leung, and P. K. L. Chan,“Nonvolatile organic transistor-memory devices using various thicknesses of silver nanoparticle layers”, Appl. Phys. Lett., 97, 023511, 2010.

    [56] X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and, P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor”, Appl. Phys. Lett., 99, 043303, 2011.

    無法下載圖示 校內:2018-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE