簡易檢索 / 詳目顯示

研究生: 林岑璋
Lin, Tsen-Chang
論文名稱: 基於最大似然估計之直接學習覆蓋控制
Direct Learning Coverage Control Based on Maximum Likelihood Estimation
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 192
中文關鍵詞: 多機器人系統無線感測器與機器人網路覆蓋控制最大似然估計期望最大演算法
外文關鍵詞: multi-robot control system, wireless sensor and robot network, coverage control, maximum likelihood estimation, expectation maximization
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文基於最大似然估計提出在階層式無線感測器與機器人網路架構下的直接學習覆蓋控制方法。此架構中有兩種感測器,高階感測器僅配置在機器人上,提供特定範圍的感測資訊;低階感測器僅能提供特定位置的感測資訊,除了配置在機器人上,也在環境中預先置放靜態感測器以確保系統獲得充足的資訊。環境中感測資訊的分布稱為感測密度函數,而本研究之目的乃藉由此架構中低階感測器回授的資訊建構估測密度函數以學習感測密度函數,並利用覆蓋控制方法找到多機器人系統的最佳分布,使搭載高階感測器的移動型機器人之感測資訊量最大化。
    本論文分別分析感測密度學習的相似性和覆蓋任務的性能函數與似然函數最佳化的一致關係,依此關係利用期望最大演算法完成最大似然估計,提出移動基底函數中心位置之感測密度學習方法,以及考慮感測模型之覆蓋控制器的設計方法。此外,若選擇感測模型為感測密度學習的基底函數,則相似性與性能函數會同時達到最大化,進而得以感測密度學習所求得的參數設計直接學習覆蓋控制器。
    直接學習覆蓋控制方法不但在感測密度學習中有良好的強健性與學習效果,同時也具有極佳的運算效能,也能利用複雜的感測模型完成覆蓋。本論文以理論分析、數值模擬以及實驗驗證此控制架構之最佳化與穩定性,也就模擬與實驗結果的不同,討論其造成原因並提出可能之解決辦法。

    This thesis proposes a direct learning coverage controller in wireless sensor and robot network(WSRN) structure based on the concept of maximum likelihood estimation. There are two kinds of sensors under WSRN. High-level sensors are embedded on mobile robots to sense information within indoor environment. On the other hand, low-level sensors also embedded on mobile robots, in addition, some of them are stationary sensors pre-deployed in the environment. Sensing density function represents the distribution of information of low-level sensor. The objective of this thesis is to utilize the information collected by low-level sensors to construct estimated density in order to learn sensing density and maximize the information quantity of high-level sensors.
    Based on equivalence between optimization problem of similarity in learning task, performance function in coverage task, and likelihood function. The expectation maximization algorithm can be utilized to find an optimal solution of maximum likelihood estimation. This thesis introduces a sensing density function learning method by tuning the center of basis function and derives a general solution for complicated sensor model such as Gaussian function. Moreover, if the basis function in sensing density learning is chosen as sensor model, similarity and performance function are optimized simultaneously so that direct learning coverage controller can be derived.
    The direct learning coverage control has robust performance in sensing density learning and high computational efficiency, which also takes sensor model into account. Moreover, this thesis provides theoretical analysis, numerical simulation and experiment to validate the optimization and stability of controller.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究動機與問題定義. . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 研究目標及貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第二章基礎理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 非線性系統穩定性理論. . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 非線性系統. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 系統穩定性. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 Lyapunov穩定性分析. . . . . . . . . . . . . . . . . . . . . . 13 2.2 凸函數最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 凸函數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 延森不等式. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 機率理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 高斯混合模型. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 最大似然估計. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 期望最大演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 餘弦相似性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第三章環境感測密度函數學習. . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 群組機器人覆蓋問題. . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Lloyd控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 感測密度學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.1 中心學習方法. . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 權重學習方法[5] . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.3 中心權重學習方法. . . . . . . . . . . . . . . . . . . . . . . 38 3.4 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 第四章考慮感測模型之覆蓋控制. . . . . . . . . . . . . . . . . . . . . . . 63 4.1 複雜感測模型之群組機器人覆蓋問題. . . . . . . . . . . . . . . . . 63 4.2 隱函數轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 EM控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.2 避障控制器設計[11] . . . . . . . . . . . . . . . . . . . . . . 70 4.2.3 加入責任區域分割之覆蓋問題[12] . . . . . . . . . . . . . . 70 4.3 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.1 感測模型-高斯函數. . . . . . . . . . . . . . . . . . . . . . . 76 4.3.2 感測模型-半球型函數. . . . . . . . . . . . . . . . . . . . . . 76 第五章直接學習覆蓋控制. . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1 性能函數與估測相似性之關係. . . . . . . . . . . . . . . . . . . . . 81 5.2 直接性覆蓋控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 第六章實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1 實驗平台架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.1 群組機器人系統. . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.2 室內定位系統. . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 實驗參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3 感測密度學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.4 隱函數轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.5 直接感測密度學習覆蓋控制. . . . . . . . . . . . . . . . . . . . . . 116 6.6 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 第七章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.1.1 環境感測密度函數學習. . . . . . . . . . . . . . . . . . . . . 125 7.1.2 考慮感測模型之覆蓋控制. . . . . . . . . . . . . . . . . . . 126 7.1.3 直接學習覆蓋控制. . . . . . . . . . . . . . . . . . . . . . . 127 7.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Appendix - Experimet Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.1 Localization and Orientation Detection . . . . . . . . . . . . . . . . 135 A.2 Learning and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Bluetooth Communication . . . . . . . . . . . . . . . . . . . . . . . . 189

    [1] Tamio Arai, Enrico Pagello, and Lynne E Parker. Editorial: Advances in multi-robot systems. IEEE Transactions on robotics and automation, 18(5):655-661, 2002.
    [2] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey. Computer networks, 52(12):2292-2330, 2008.
    [3] Xu Li, Inria Lille, Rafael Falcon, Amiya Nayak, and Ivan Stojmenovic. Servicing wireless sensor networks by mobile robots. IEEE Communications Magazine, 50(7), 2012.
    [4] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. IEEE Transactions on robotics and Automation, 20(2):243-255, 2004.
    [5] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3):357-375, 2009.
    [6] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Unifying geometric, probabilistic, and potential eld approaches to multi-robot deployment. The International Journal of Robotics Research, 30(3):371-383, 2011.
    [7] Cheng Song, Gang Feng, Yuan Fan, and Yong Wang. Decentralized adaptive awareness coverage control for multi-agent networks. Automatica, 47(12):2749-2756, 2011.
    [8] Mac Schwager, Francesco Bullo, David Skelly, and Daniela Rus. A ladybug exploration strategy for distributed adaptive coverage control. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 2346-2353. IEEE, 2008.
    [9] Wei Li and Christos G Cassandras. Distributed cooperative coverage control of sensor networks. In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on, pages 2542-2547. IEEE, 2005.
    [10] Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing magazine, 13(6):47-60, 1996.
    [11] Dusan M Stipanovic, Peter F Hokayem, Mark W Spong, and Dragoslav DSiljak. Cooperative avoidance control for multiagent systems. Journal of Dynamic Systems, Measurement, and Control, 129(5):699-707, 2007.
    [12] Wei-Tao Lee and Yen-Chen Liu. Dynamic coverage control for mobile robot network with limited and nonidentical sensory ranges. In International Conference on Robotics and Automation. IEEE, 2017.
    [13] 林晁瑋. 基於抽象任務函數之集中式與分散式人機互動控制系統. Master's thesis, 國立成功大學, 2015.
    [14] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang. Towards smart factory for industry 4.0: a self-organized multi-agent system with
    big data based feedback and coordination. Computer Networks, 101:158-168, 2016.
    [15] Edward A Lee. Cyber physical systems: Design challenges. In Object oriented real-time distributed computing (isorc), 2008 11th ieee international symposium on, pages 363-369. IEEE, 2008.
    [16] Mehmet Dogar, Ross A Knepper, Andrew Spielberg, Changhyun Choi, Henrik I Christensen, and Daniela Rus. Multi-scale assembly with robot teams. The International Journal of Robotics Research, 34(13):1645-1659, 2015.
    [17] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.
    [18] Tucker Balch and Ronald C Arkin. Behavior-based formation control for multi-robot teams. IEEE transactions on robotics and automation, 14(6):926-939, 1998.
    [19] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on automatic control, 51(3):401-420, 2006.
    [20] Yen-Chen Liu and Nikhil Chopra. Synchronization of networked robotic systems on strongly connected graphs. In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 3194-3199. IEEE, 2010.
    [21] Takeshi Hatanaka, Yuji Igarashi, Masayuki Fujita, and Mark W Spong. Passivity-based pose synchronization in three dimensions. IEEE Transac-tions on Automatic Control, 57(2):360-375, 2012.

    [22] Silvia Mastellone, Du san M Stipanovi c, Christopher R Graunke, Koji A Intlekofer, and Mark W Spong. Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. The International Journal of Robotics Research, 27(1):107-126, 2008.
    [23] Maja J Mataric, Martin Nilsson, and Kristian T Simsarin. Cooperative multirobot box-pushing. In Intelligent Robots and Systems 95.'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on, volume 3, pages 556-561. IEEE, 1995.
    [24] Gong-Bo Dai and Yen-Chen Liu. Distributed coordination and cooperation control for networked mobile manipulators. IEEE Transactions on Industrial Electronics, 2016.
    [25] James Bruce and Manuela Veloso. Real-time randomized path planning for robot navigation. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages 2383-2388. IEEE, 2002.
    [26] Byungjae Park, Jinwoo Choi, and Wan Kyun Chung. An efficient mobile robot path planning using hierarchical roadmap representation in indoor environment. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 180-186. IEEE, 2012.
    [27] Joseph M Kahn, Randy H Katz, and Kristofer SJ Pister. Next century challenges: mobile networking for smart dust". In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pages 271-278. ACM, 1999.
    [28] Geoffrey Werner-Allen, Konrad Lorincz, Mario Ruiz, Omar Marcillo, Jeff Johnson, Jonathan Lees, and Matt Welsh. Deploying a wireless sensor network on an active volcano. IEEE internet computing, 10(2):18-25, 2006.
    [29] Loren Schwiebert, Sandeep KS Gupta, and Jennifer Weinmann. Research challenges in wireless networks of biomedical sensors. In Proceedings of the 7th annual international conference on Mobile computing and networking,
    pages 151-165. ACM, 2001.
    [30] Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on, 28(2):129{137, 1982.
    [31] Jorge Cortes, Sonia Martnez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks: varians on a theme. In Robotics and Automation (ICRA), 2002 IEEE International Conference on, volume 2, pages 1327-1332. IEEE, 2002. 133

    [32] Sung G Lee, Yancy Diaz-Mercado, and Magnus Egerstedt. Multirobot control using time-varying density functions. IEEE Transactions on Robotics, 31(2):489-493, 2015.
    [33] 李維韜. 基於覆蓋控制之雙向人機遠端遙控系統. Master's thesis, 國立成功大學, 2016.
    [34] Luciano CA Pimenta, Vijay Kumar, Renato C Mesquita, and Guilherme AS Pereira. Sensing and coverage for a network of heterogeneous robots. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 3947-3952. IEEE, 2008.
    [35] Andreas Breitenmoser, Mac Schwager, Jean-Claude Metzger, Roland Siegwart, and Daniela Rus. Voronoi coverage of non-convex environments with a group of networked robots. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 4982-4989. IEEE, 2010.
    [36] Yiannis Stergiopoulos, Michalis Thanou, and Anthony Tzes. Distributed collaborative coverage-control schemes for non-convex domains. IEEE Transactions on Automatic Control, 60(9):2422-2427, 2015.
    [37] Jorge Cortes. Coverage optimization and spatial load balancing by robotic sensor networks. IEEE Transactions on Automatic Control, 55(3):749-754, 2010.
    [38] Yiannis Stergiopoulos and Anthony Tzes. Coverage-oriented coordination of mobile heterogeneous networks. In Control & Automation (MED), 2011 19th Mediterranean Conference on, pages 175{180. IEEE, 2011.
    [39] Minyi Zhong and Christos G Cassandras. Distributed coverage control and data collection with mobile sensor networks. IEEE Transactions on Automatic Control, 56(10):2445-2455, 2011.
    [40] Takeshi Hatanaka, Tatsuya Ibuki, Azwirman Gusrialdi, and Masayuki Fujita. Coverage control for camera sensor networks: Its implementation and experimental verification. In Control and Automation, 2009. MED'09. 17th Mediterranean Conference on, pages 446-451. IEEE, 2009.
    [41] Islam I Hussein and Dusan M Stipanovic. Effective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Transactions on Control Systems Technology, 15(4):642-657, 2007.
    [42] Yue Wang and Islam I Hussein. Awareness coverage control over large-scale domains with intermittent communications. IEEE Transactions on Automatic Control, 55(8):1850-1859, 2010.
    [43] Kevin M Lynch, Ira B Schwartz, Peng Yang, and Randy A Freeman. Decentralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics, 4(3):710-724, 2008.
    [44] Jaeyong Lee, Avinash D Dharne, and Suhada Jayasuriya. Potential field based hierarchical structure for mobile sensor network deployment. In American Control Conference, 2007. ACC'07, pages 5946-5951. IEEE, 2007.
    [45] Farshid Abbasi, Afshin Mesbahi, and Javad Mohammadpour. Team-based coverage control of moving sensor networks. In American Control Conference (ACC), 2016, pages 5691-5696. IEEE, 2016.
    [46] Marek Kuczma. An introduction to the theory of functional equations and inequalities: Cauchy's equation and Jensen's inequality. Springer Science & Business Media, 2009.
    [47] Halbert White. Maximum likelihood estimation of misspecified models. Econometrica: Journal of the Econometric Society, pages 1-25, 1982.
    [48] Kenneth Lange. Convergence of em image reconstruction algorithms with gibbs smoothing. IEEE transactions on medical imaging, 9(4):439-446, 1990.
    [49] Emanuel Levitan and Gabor T Herman. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Transactions on Medical Imaging, 6(3):185-192, 1987.
    [50] Pakorn KaewTraKulPong and Richard Bowden. An improved adaptive background mixture model for real-time tracking with shadow detection. In Video-based surveillance systems, pages 135-144. Springer, 2002.
    [51] Paul S Bradley, Usama Fayyad, and Cory Reina. Scaling em (expectation-maximization) clustering to large databases. Technical report, Technical Report MSR-TR-98-35, Microsoft Research Redmond, 1998.
    [52] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of document clustering techniques. In KDD workshop on text mining, volume 400, pages 525-526. Boston, 2000.
    [53] Karl J Astrom and Bjorn Wittenmark. Adaptive control. Courier Corporation, 2013.
    [54] Chao-Wei Lin, Mun-Hooi Khong, and Yen-Chen Liu. Experiments on human-in-the-loop coordination for multirobot system with task abstraction. IEEE Transactions on Automation Science and Engineering, 12(3):981-989, 2015.
    [55] Adrian Ford and Alan Roberts. Colour space conversions. Westminster University, London, 1998:1-31, 1998.
    [56] N Sukumar and B Moran. c 1 natural neighbor interpolant for partial differential equations. Numerical Methods for Partial Differential Equations, 15(4):417-447, 1999. 136

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE