簡易檢索 / 詳目顯示

研究生: 張想
Zhang, Xiang
論文名稱: 台灣可避免死因死亡率地區不平等趨勢,2008-2019
Trends in regional inequality in avoidable mortality in Taiwan, 2008-2019
指導教授: 呂宗學
Lu, Tsung-Hsueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 公共衛生學系
Department of Public Health
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 死因統計可避免死因死因率趨勢地區不平等
外文關鍵詞: Avoidable mortality, mortality trends, regional inequality
相關次數: 點閱:124下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:可避免死因是指在現有醫療照護體系下,有些死亡是可以避免的。可避免死因死亡率常被當作一個國家或地區健康體系績效的哨兵指標,啟動進一步評估。縣市是台灣健康體系地方自治單位,可惜過去沒有縣市別的可避免死因死亡率分析。
    目的:探討台灣可避免死因死亡率趨勢與縣市地區不平等的趨勢。
    方法:死因統計由衛生福利部統計處的開放資料集獲得,可避免死因定義依照國際經濟合作發展組織與歐盟統計2019 年版本定義進行部分調整。首先是台灣為單位的逐年趨勢,以連結點迴歸模式估算年改變率來呈現。接著分析不同年代(2008-2010,2011-2013,2014-2016 與2017-2019)縣市不平等趨勢。第三再將每個縣市依照人口密度與家戶可支配所得區分為不同社經等級,同樣探討不同年代不平等趨勢。不平等測
    量包括絕對(死亡率差與變異係數)與相對(死亡率比)不平等。
    結果:由2008 年到2019 年年齡標準化死亡率年下降百分比,總死因是0.9%,可避免死因是1.8%,非可避免死因是0.3%,公衛可預防死因是2.1%,醫療可治療死因是1.6%。女性的下降程度大於男性,以可避免死因為例,女性是2.2%,男性是1.6%。縣市地區絕對不平等,死亡率變異係數的年代改變可以看到可避免死因沒有改變,非可避免死因反而縮小,2017-2019/2008-2010 分別是1.01 與0.85。醫療可治療死因的變異係數縮小,公衛可預防死因的變異係數增加,2017-2019/2008-2010 分別是0.88 與1.09。相對不平等也出現類似的年代改變,最高最低死亡率比的縮小程度,非可避免死因大於可避免死因,2017-2019/2008-2010 分別是0.86 與1.01。醫療可治療死因大於公衛可預防死因,2017-2019/2008-2010 分別0.76 與1.04。至於縣市社經不平等的趨勢,使用家戶可支配所得為社經指標不平等趨勢增加。使用都市化程度為社經指標不平等趨勢不變或稍微縮小。死因別差異沒有很一致與明顯趨勢。
    結論:本研究結果顯示台灣整體而言可避免死因死亡率下降趨勢大於非可避免死因,公衛可預防死因大於醫療可預防死因。縣市地區不平等也是出現不平等縮小趨勢,但是非可避免死因縮小程度大於可避免死因。關於非可避免死因地區不平等縮小程度大於可避免死因的非預期發現,還有待進一步分析特定死因別死亡率來回答。

    This study aimed to examine the city/county inequality in avoidable mortality (AM) in Taiwan from 2008 through 2019. We obtained the city/county cause of death mortality data from the open datasets released by the Ministry of Health and Welfare. The definitions of AM was according to the OECD/Eurostat 2019 version. Population density and household disposable income in each city/county were used to classify four level of socioeconomic status. Annual percent changes (APCs) derived from joinpoint regression model were used to assess the secular trends of different causes of death in Taiwan. Absolute (rate differences and coefficient of variation [CV]) and relative (rate ratios) inequality measures were calculated were calculated to examine the city/county inequality. The APC for all causes, AM, non-AV, public health preventable (PHP), and medical care treatable (MCT) mortality from 2008 to 2019 was -0.9%, -1.8%, -0.3%, -2.1%, and -1.6%, respectively. Women had larger exlent in decline of AM than men, the APC of AM was -2.2% and -1.6%, respectively. With regard to the absolute regional inequality, the CV ratio between 2017-2019 with 2008-2010 was 1.01 and 0.85, respectively for AM and non-AM. Similarly, the relative regional inequality (highest and lowest mortality ratio) showed larger decline for non-AM than AM, the 2017-2019/2008-2010 ratio was 0.86 and 1.01, respectively. The 2017-2019/2008-2010 ratio for MCT and PHP was 0.76 and 1.04, respectively. Regarding the trends in socioeconomic inequality, the inequality according to household income increased; on the contrary, the inequality
    according to urbanization level was decreasing or stable. No consistent relationships were found for different causes. In conclusion, further studies on specific causes of death are needed to explain why the non-AM had larger extent of decline in regional equality than AM in Taiwan.

    目錄 摘要.........................................................................................................................................I 誌謝.......................................................................................................................................V 圖目錄................................................................................................................................ VII 表目錄...............................................................................................................................VIII 附表目錄............................................................................................................................. IX 第一章緒論..........................................................................................................................1 1.1 研究背景與動機.........................................................................................................2 1.2 研究目的.....................................................................................................................3 1.3 研究範疇限制.............................................................................................................4 第二章文獻回顧..................................................................................................................5 2.1 可避免死因概念演進.................................................................................................5 2.2 一個國家趨勢分析.....................................................................................................6 2.3 一個國家地區不平等分析.........................................................................................7 2.4 文獻回顧小結.............................................................................................................7 第三章研究方法..................................................................................................................9 3.1 資料來源.....................................................................................................................9 3.2 可避免死因定義.........................................................................................................9 3.3 死亡率計算...............................................................................................................10 3.4 縣市社經指標...........................................................................................................10 3.5 統計分析...................................................................................................................10 第四章研究結果................................................................................................................11 4.1 台灣逐年趨勢...........................................................................................................11 4.2 縣市地區別不平等趨勢...........................................................................................11 4.3 縣市社經不平等趨勢...............................................................................................12 4.4 結果摘要...................................................................................................................13 第五章討論與結論............................................................................................................14 5.1 主要發現....................................................................................................................14 5.2 與過去研究比較........................................................................................................14 5.2.1 與過去一國趨勢分析研究結果比較....................................................................15 5.2.2 與過去一國地區不平等趨勢分析研究結果比較................................................15 5.3 本研究強項與弱項....................................................................................................16 5.4 結論............................................................................................................................17 參考文獻..........................................................................................................................18

    參考文獻
    中文文獻
    行政院主計總處(2021),縣市重要統計指標,網址:
    https://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9.asp
    呂宗學,陳端容,江東亮(2015),釐清健康不平等相關名詞,台灣公共衛生雜誌,34(2),
    115-118。
    呂宗學(2020),台灣使用自動化編碼系統與國際疾病分類第十版對死因統計之影響:
    雙軌編碼研究,台灣公共衛生雜誌,39(5),578-597。
    衛生福利部統計處(2021),死因統計資料集_死因統計(135 分類)-縣市五齡,網址:
    https://dep.mohw.gov.tw/dos/cp-2519-3480-113.html
    英文文獻
    Aburto, J. M., & Riffe, T. (2016). Deviations in avoidable causes of death in adulthood
    drive mortality inequality between Mexican states. In March 2016 Annual Meeting.
    PAA.
    Aburto, J. M., Riffe, T., & Canudas-Romo, V. (2018). Trends in avoidable mortality over
    the life course in Mexico, 1990–2015: a cross-sectional demographic analysis. BMJ
    Open, 8(7), e022350.
    Albert, X., Bayo, A., Alfonso, J. L., Cortina, P., & Corella, D. (1996). The effectiveness of
    health systems in influencing avoidable mortality: a study in Valencia, Spain, 1975-90.
    Journal of Epidemiology & Community Health, 50(3), 320-325.
    Andreev, E. M., Nolte, E., Shkolnikov, V. M., Varavikova, E., & McKee, M. (2003). The
    evolving pattern of avoidable mortality in Russia. International Journal of
    Epidemiology, 32(3), 437-446.
    Bahk, J., & Jung-Choi, K. (2020). The contribution of avoidable mortality to the life
    expectancy gains in Korea between 1998 and 2017. International Journal of
    Environmental Research and Public Health, 17(18), 6499.
    Charlton, J. R. H., Silver, R., Hartley, R. M., & Holland, W. W. (1983). Geographical
    variation in mortality from conditions amenable to medical intervention in England
    19
    and Wales. Lancet, 321(8326), 691-696.
    Charlton, J. R., Bauer, R., & Lakhani, A. (1984). Outcome measures for district and
    regional health care planners. Journal of Public Health, 6(4), 306-315.
    Charlton, J., Lakhani, A., & Aristidou, M. (1986). How have ‘avoidable death’indices for
    England and Wales changed? 1974–78 compared with 1979–83. Journal of Public
    Health, 8(4), 304-314.
    Chen, B. K., & Yang, C. Y. (2013). Temporal trend analysis of avoidable mortality in
    Taiwan, 1971-2008: overall progress, with areas for further medical or public health
    investment. BMC Public Health, 13(1), 1-11.
    Chen, B. K., & Yang, C. Y. (2014). Differences in age-standardized mortality rates for
    avoidable deaths based on urbanization levels in Taiwan, 1971–2008. International
    Journal of Environmental Research and Public Health, 11(2), 1776-1793.
    Chen, B. K., Yang, Y. T., & Yang, C. Y. (2016). Trends in amenable deaths based on
    township income quartiles in Taiwan, 1971–2008: did universal health insurance close
    the gap?. Journal of Public Health, 38(4), e524-e536.
    Chen, B. K., Jindal, D., Yang, Y. T., Hair, N., & Yang, C. Y. (2020). Associations between
    physician supply levels and amenable mortality rates: an analysis of Taiwan over
    nearly 4 decades. Health Services Insights, 13, 1178632920954878.
    Chiou, S. T., & Lu, T. H. (2014). Changes in geographic variation in the uptake of cervical
    cancer screening in Taiwan: possible effects of “leadership style factor”? Health
    Policy, 114(1), 64-70.
    Costa, C., Freitas, A., Almendra, R., & Santana, P. (2020). The association between
    material deprivation and avoidable mortality in Lisbon, Portugal. International
    Journal of Environmental Research and Public Health, 17(22), 8517.
    Eun, S. J. (2019). Avoidable, amenable, and preventable mortalities in South Korea,
    2000–2017: age-period-cohort trends and impact on life expectancy at birth. Social
    Science & Medicine, 237, 112482.
    French, K. M., & Jones, K. (2006). Impact of definition on the study of avoidable mortality:
    geographical trends in British deaths 1981–1998 using Charlton and Holland's
    definitions. Social Science & Medicine, 62(6), 1443-1456.
    Gavurová, B., & Gróf, M. (2016). Relevance of outcomes implementation of specific
    20
    economic and social analyses of mortality for modification of avoidable mortality
    concepts. Journal of Applied Economic Science, 11(1), 65-77.
    GBD 2015 Healthcare Access and Quality Collaborators (2017). Healthcare Access and
    Quality Index based on mortality from causes amenable to personal health care in 195
    countries and territories, 1990–2015: a novel analysis from the Global Burden of
    Disease Study 2015. Lancet, 390(10091), 231-66.
    GBD 2016 Healthcare Access and Quality Collaborators (2018). Measuring performance on
    the Healthcare Access and Quality Index for 195 countries and territories and selected
    subnational locations: a systematic analysis from the Global Burden of Disease Study
    2016. Lancet, 391(10136), 2236-2271..
    Gusmano, M. K., Rodwin, V. G., Wang, C., Weisz, D., Luo, L., & Hua, F. (2015). Shanghai
    rising: health improvements as measured by avoidable mortality since 2000.
    International Journal of Health Policy and Management, 4(1), 7.
    Hoffmann, R., Plug, I., Khoshaba, B., McKee, M., Mackenbach, J. P., & AMIEHS working
    group. (2013). Amenable mortality revisited: the AMIEHS study. Gaceta Sanitaria,
    27(3), 199-206.
    Humblet, P. C., Lagasse, R., Moens, G. F., Wollast, E., & Van de Voorde, H. (1987).
    Avoidable mortality in Belgium. Social Science & Medicine, 25(5), 485-493.
    Humblet, P. C., Lagasse, R., & Leveque, A. (2000). Trends in Belgian premature avoidable
    deaths over a 20 year period. Journal of Epidemiology & Community Health, 54(9),
    687-691.
    James, P. D., Manuel, D. G., & Mao, Y. (2006). Avoidable mortality across Canada from
    1975 to 1999. BMC Public Health, 6(1), 1-10.
    James, P. D., Wilkins, R., Detsky, A. S., Tugwell, P., & Manuel, D. G. (2007). Avoidable
    mortality by neighbourhood income in Canada: 25 years after the establishment of
    universal health insurance. Journal of Epidemiology & Community Health, 61(4),
    287-296.
    Korda, R. J., Butler, J. R., Clements, M. S., & Kunitz, S. J. (2007). Differential impacts of
    health care in Australia: trend analysis of socioeconomic inequalities in avoidable
    mortality. International Journal of Epidemiology, 36(1), 157-165.
    Lee, Y. C., Huang, Y. T., Tsai, Y. W., Huang, S. M., Kuo, K. N., McKee, M., & Nolte, E.
    21
    (2010). The impact of universal National Health Insurance on population health: the
    experience of Taiwan. BMC Health Services Research, 10(1), 1-8.
    Lenzi, J., Rucci, P., Franchino, G., Domenighetti, G., Damiani, G., & Fantini, M. P. (2013).
    Regional and gender variation in mortality amenable to health care services in Italy.
    Journal of Hospital Administration, 2(3), 28-37.
    Lloyd-Sherlock, P. G., Ebrahim, S., McKee, M., & Prince, M. J. (2016). Institutional
    ageism in global health policy. British Medical Journal, 354, :i4514.
    Lloyd-Sherlock, P., Ebrahim, S., Martinez, R., McKee, M., & Ordunez, P. (2019). Reducing
    the cardiovascular disease burden for people of all ages in the Americas region:
    analysis of mortality data, 2000–15.Lancet Global Health, 7(5), e604-e612.
    Mackenbach, J. P., Hoffmann, R., Khoshaba, B., Plug, I., Rey, G., Westerling, R., ... &
    McKee, M. (2013). Using ‘amenable mortality’as indicator of healthcare effectiveness
    in international comparisons: results of a validation study. Journal of Epidemiol
    Community Health, 67(2), 139-146.
    Mühlichen, M. (2019). Avoidable mortality in the German Baltic sea region since
    reunification: convergence or persistent disparities? European Journal of Population,
    35(3), 609-637.
    Nolasco, A., Moncho, J., Quesada, J. A., Melchor, I., Pereyra-Zamora, P., Tamayo-Fonseca,
    N., ... & Borrell, C. (2015). Trends in socioeconomic inequalities in preventable
    mortality in urban areas of 33 Spanish cities, 1996–2007 (MEDEA project).
    International Journal for Equity in Health, 14(1), 1-15.
    Nolasco, A., Quesada, J. A., Moncho, J., Melchor, I., Pereyra-Zamora, P., Tamayo-Fonseca,
    N., ... & Zurriaga, O. (2014). Trends in socioeconomic inequalities in amenable
    mortality in urban areas of Spanish cities, 1996–2007. BMC Public Health, 14(1),
    1-12.
    Nolasco, A., Pereyra-Zamora, P., Sanchis-Matea, E., Tamayo-Fonseca, N., Caballero, P.,
    Melchor, I., & Moncho, J. (2018). Economic crisis and amenable mortality in Spain.
    International Journal of Environmental Research and Public Health, 15(10), 2298.
    Nolte, E., Scholz, R., Shkolnikov, V., & McKee, M. (2002). The contribution of medical
    care to changing life expectancy in Germany and Poland. Social Science & Medicine,
    55(11), 1905-1921.
    22
    Nolte, E., & McKee, M. (2004). Does health care save lives? avoidable mortality revisited.
    The Nuffield Trust.
    OECD/Eurostat. (2019). Avoidable mortality: OECD/Eurostat lists of preventable and
    treatable causes of death (November 2019 version).
    OECD/European Union (2020), Health at a glance: Europe 2020: state of health in the EU
    cycle, OECD Publishing, Paris, https://doi.org/10.1787/82129230-en.
    Office of National Statistics. Avoidable mortality in the UK (2011-2019) statistical bulletins.
    Accessed at June 23, 2021 at
    https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesof
    death/bulletins/avoidablemortalityinenglandandwales/previousReleases
    Olatunde, O., Windsor-Shellard, B., & Campbell, A. (2016). Revised definition of
    avoidable mortality. Office for National Statistics.
    Pereyra-Zamora, P., Copete, J. M., Oliva-Arocas, A., Caballero, P., Moncho, J.,
    Vergara-Hernández, C., & Nolasco, A. (2020). Changes in socioeconomic inequalities
    in amenable mortality after the economic crisis in cities of the Spanish Mediterranean
    coast. International Journal of Environmental Research and Public Health, 17(18),
    6489.
    Pérez, G., Rodríguez-Sanz, M., Cirera, E., Pérez, K., Puigpinós, R., & Borrell, C. (2014).
    Commentary: approaches, strengths, and limitations of avoidable mortality. Journal of
    Public Health Policy, 35(2), 171-184.
    Piers, L. S., Carson, N. J., Brown, K., & Ansari, Z. (2007). Avoidable mortality in Victoria
    between 1979 and 2001. Australian and New Zealand Journal of Public Health, 31(1),
    5-12.
    Poikolainen, K., & Eskola, J. (1986). The effect of health services on mortality: decline in
    death rates from amenable and non-amenable causes in Finland, 1969-81. Lancet,
    327(8474), 199-202.
    Poikolainen, K., & Eskola, J. (1988). Health services resources and their relation to
    mortality from causes amenable to health care intervention: a cross-national
    study. International Journal of Epidemiology, 17(1), 86-89.
    Poikolainen, K., & Eskola, J. (1995). Regional and social class variation in the relative risk
    of death from amenable causes in the city of Helsinki, 1980–1986. International
    23
    Journal of Epidemiology, 24(1), 114-118.
    Rutstein, D. D., Berenberg, W., Chalmers, T. C., Child 3rd, C. G., Fishman, A. P., Perrin, E.
    B., ... & Evans, C. C. (1976). Measuring the quality of medical care: a clinical method.
    New England Journal of Medicine, 294(11), 582-588.
    Simonato, L., Ballard, T., Bellini, P., & Winkelmann, R. (1998). Avoidable mortality in
    Europe 1955-1994: a plea for prevention. Journal of Epidemiology & Community
    Health, 52(10), 624-630.
    Tobias, M., & Jackson, G. (2001). Avoidable mortality in New Zealand, 1981–97.
    Australian and New Zealand Journal of Public Health, 25(1), 12-20.
    Westerling, R. (1992a). Trends in" avoidable" mortality in Sweden, 1974-1985. Journal of
    Epidemiology & Community Health, 46(5), 489-493.
    Westerling, R. (1992b). “Avoidable” causes of death in Sweden 1974–85. International
    Journal for Quality in Health Care, 4(4), 319-328.
    Westerling, R., & Smedby, B. (1992). The European Community ‘avoidable death
    indicators’ in Sweden 1974–1985. International Journal of Epidemiology, 21(3),
    502-510.
    Westerling, R. (1993). Indicators of “avoidable” mortality in health administrative areas in
    Sweden 1974–1985. Scandinavian Journal of Social Medicine, 21(3), 176-187.
    Westerling, R. (1996). Can regional variation in" avoidable" mortality be explained by
    deaths outside hospital? a study from Sweden, 1987-90. Journal of Epidemiology &
    Community Health, 50(3), 326-333.
    Westerling, R., Gullberg, A., & Rosén, M. (1996). Socioeconomic differences in
    ‘avoidable’mortality in Sweden 1986–1990.International Journal of Epidemiology,
    25(3), 560-567.
    Zilidis, C., Stuckler, D., & McKee, M. (2020). Use of amenable mortality indicators to
    evaluate the impact of financial crisis on health system performance in Greece.
    European Journal of Public Health, 30(5), 861-866.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE