| 研究生: |
顏士超 Yan, Shr-Chau |
|---|---|
| 論文名稱: |
以Pechini聚合前導物法製備(Ba,Ca)(Ti,Zr)O3奈米粉體之研究 |
| 指導教授: |
雷大同
Ray, Dah-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | BCTZ奈米粉體 、Pechini法 |
| 外文關鍵詞: | BCTZ nano-powders, Pechii method |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,積層陶瓷電容器(MLCC)產品的製備,以介電層薄層化為主要趨勢,此乃因為獲得高電容值之MLCC,最有效的方法是降低介電層厚度以增加單位介電層數,因此鈦酸鋇基之陶瓷原料粉末須往奈米範圍發展。在諸多MLCC產品中,以Y5V規格之市場需求超過50%,Y5V之原料係以(Ba1-xCax) (Ti1-y Zry)O3為主要化學組成,其化學計式中之x及y之範圍為0≦x≦0.12, 0.1≦y≦0.18。
傳統鈦酸鋇介電陶瓷粉末以固態反應法合成,已無法滿足高品質MLCC之需求。濕式化學合成技術,則具有達成原子尺度之均質混合及可在低溫下合成高純度奈米粉體之優點,已成為製備高品質MLCC之必須途徑。
Pechini於1967年利用多官能基醇類如乙二醇為溶劑,將水溶液中以檸檬酸分子螫合之各成份陽離子,以加熱方式進行酯化反應及聚酯反應,形成類似樹脂的前導溶液,之後在600-700℃間煅燒,可獲得單相BaTiO3。
一般薄膜的製備可以依照基材的尺寸、薄膜的厚度以及薄膜的型態來選擇製程,以溶膠-凝膠法旋鍍製備薄膜因具有低溫程序及成本低廉等優點,而利用聚合前導物法所製備之前導溶液具有較高之粘度與流變性質,故亦適合以旋鍍方式製備薄膜。
本研究利用Pechini聚合前導物法以檸檬酸為螯合劑,與乙二醇產生酯化以及聚合反應後,形成計量比為(Ba0.95Ca0.05)(Ti0.85,Zr0.15)O3粉體之金屬前導溶液及粉體。在前導物形成最終產物的熱分解過程中,發現形成(Ba0.95Ca0.05)(Ti0.85,Zr0.15)O3前之熱分解與BaTiO3相同,可區分為(1)脫水反應;(2)氧化反應;(3)中間相的產生以及(4)最終相的出現與完成。在BaTiO3之合成此過程中有機酸根螯合陽離子會轉變成碳酸根進而與陽離子鍵結而產生中間相,而當加入計量比之Ca、Zr離子,會抑制與有機酸根的螯合,加速與碳酸根反應,且延遲 至700℃後完全生成最終相。
在(Ba0.95Ca0.05)(Ti0.85,Zr0.15)O3粉體的性質方面,700℃煅燒4小時後所合成出的粉體,因為具有較高之表面積,所以有明顯的凝聚現象發生,故在配置25 vol%之有機漿料時,須添加3%之BYK-111分散劑以使漿料充份分散而呈現牛頓流體行為,不過在SEM照片仍顯示有聚團存在。若利用(Ba0.95Ca0.05)(Ti0.85,Zr0.15)O3前導溶液進行旋鍍製備薄膜,則在650℃煅燒30分鐘即可產生結晶性良好之薄膜。
In order to develop next generation multi-layer ceramic capacitors (MLCC), the raw materials and processing technology must fulfill the requirement for thin dielectrics. The demand of Y5V for MLCC in the market is over 50%. The chemical composition of Y5V has the general formula of (Ba1-xCax) (Ti1-y Zry)O3 with 0≦x≦0.12 and 0.1≦y≦0.18.
Barium titanate powders have traditionally been prepared by the solid-state reaction, which can not achieve modern quality equipments of MLCC. The wet chemical method has the advantages of atomic-scaled mixing and forming high purity nano-powders at low temperature and become a necessary route for high performance MLCC.
Pechini in 1967 had used citric acid to chelate metal ions in enthylene glycol and heated the solution to induce esterization and polymerization and finally to form the resin-like precursor solution. Calcined between 600℃ and 700℃, a single-phase BaTiO3 was obtained.
The selection of the thin film processing is based on the size of substrates, thickness of films and form of films. The precursor solution made using Pechini method is suitable for spin coating approach to prepare thin films .
In this thesis, Pechini method was used to form (Ba0.95Ca0.05)(Ti0.85Zr0.15)O3 powders. Thermal analysis indicated that thermal decomposition of the precursor is composed of four major steps : (1)a dehydration reaction, (2)combustion reactions, (3) intermediate -phase formation, and (4) decarbonation of the intermediate and formation of (Ba0.95Ca0.05)(Ti0.85,Zr0.15)O3. During decomposition, the nature of the bonding will be transferred from carboxylate groups to carbonate bonds. Compared with BaTiO3, the addition of Ca and Zr ions can hold down the reaction of chelation of metal ions and promote bonding between carbonate and metal ions thus delaying the formation of final perovskite phase.
Because of the high surface area, the agglomeration of (Ba,Ca)(Ti,Zr)O3 nano-powders, which were calcined at 700℃and kept for four hours is very common. The dispersant of BYK-111 at the dosage of 3% should be added to prepare organic slurries of 25 vol% to show Newtonain behavior with the viscosity between 2~4 mPa·s. However, the agglomeration can still be seen under SEM. Under 650℃ sintering for 30 min, a well crystallized and densified thin film of (Ba0.95Ca0.05)(Ti0.85Zr0.15)O3 can be prepared.
1.Yamamatsu, J., N. Kawano, T. Arashi, A. Sato, Y. Nakano and T. Nomura, “Reliability of multilayer ceramic capacitors with nickel electrodes,” Journal of Powder Source, vol. 60, pp.199-203(1996).
2.Hennings, D. F.K, “Dielectric materials for sintering in reducing atmosphere,” Journal of the European Ceramic Society, vol. 21, pp.1637-1642(2001).
3.Hennings, D. and H. Schreinemacher, “Temperature dependence of the segregation of calcium titanate drom solid solution of (Ba,Ca)(Ti,Zr)O3 and its effect on the dielectric properties,” Mat. Res. Bull, vol. 12, pp.1221-1226(1977).
4.Harizanov, O.A., ”Sol-gel BaTiO3 from a peptized solution,” Materials Letters, vol.34, pp.232-236 (1998).
5.Potdar, H.S., S.B. Deshpande, A.S. Deshpande, Y.B. Khollam, A.J. Patil and S.D. Pradhan, “Simplified chemical route for the synthesis of barium titanyl oxlate (BTO),” International Journal of Inorganic Material, vol. 3, pp.613-623 (2001).
6.Pinceloup, P., Christian Courtois, Jean Vicens, Anne Leriche and B. Thierry, “Evidence of dissolution –precipitation mechanism in hydrothermal synthesis of barium titanate powder,” Journal of European Ceramic society, vol. 19, pp.973-977(1999).
7.Pechini, M.P., “Barium titanium citrate, barium titanate and processes for producing same,” U.S. Pat. No.3231328(1966).
8.Lee, Wen-His and Tseung-Yuen Tseng, “Effect of A/B cation ratio on the microstructure and lifetime of (Ba1-xCax)z(Ti0.99-yZryMn0.01)O3 (BCTZ) sintered in reducing atmosphere,” Journal of Materials Science : Materials in Electronics, vol. 11, pp.157-162(2000).
9.蔡印來,“鈣鈦礦結構之La1-ySryCo1-x(Cu/Ni)xO3-δ薄膜對一氧化碳氣體感測特性之研究,” 國立成功大學資源工程研究所博士論文,89學年度。
10.Yi, Woo-Chul and T. S. Kalkur, “Deilectric properties of Mg-doped BaCaZrO3 thin films fabricated by metalorganic decomposition method,” Applied Physics Letters, vol. 78(22), pp.3517-3519(2001).
11.Coutures, J.P. and P. Odier, “Barium Titanium formation by organic resins formed with mixed citrate,” Journal of Materials Science, vol. 27, pp.1849-1856(1992).
12.Chiba, T., K.I. Itoh and O. Matsumoto, “Deposition of BaTiO3 thin films by plasma MOCVD,” Thin Solid Films, vol.300(1-2), pp.6-10(1997).
13.Cramer, N., E. Philofsky and L. Kammerdiner, ”Low temperature deposited Ba0.96Ca0.04Ti0.84Zr0.16O3 thin films on Pt electrodes by radio frequency magnetron sputtering,” Applied Physics Letters, vol. 84, pp.771-773 (2004).
14.陳慧英,黃定加及朱秦億,” 溶膠凝膠法在薄膜製備上的應用,” 化工技術,第80期,pp.162-267 (1999)。
15.Shirane, G., F. Jona and R. Pepinsky, “Some Aspects of Ferroelectricity,” Proc. IRE, 43, 1955.
16.Kingery, W. D., H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics,” John Wiley and Sons, New York, 1976.
17.Hennings, D.F.K. and H. Schreinemacher, “Ca-acceptors in dielectric ceramics sintered in reducive atmospheres,” Journal of the European Ceramic Society, vol. 15, pp.795-800(1995).
18.Zhuang, Z. Q., M. P. Harmer and D. M. Smyth, “The Effect of Octahedrally-Coordinated Calcium on Ferroelectric Transition of BaTiO3”, Mat. Res. Bull., v22, p1329-35(1987)
19.Arya, P.R., P. Jha, G.N. Subbanna and A.K. Ganguli, “Polymeric citrate precursor route to the synthesis of nano-sized barium lead titanates,” Materials Research Bulletin, vol. 38, pp.617–628 (2003).
20.Hansen, P., D. Hennings and H. Schreinemacher, “High-k dielectric ceramics from donor/acceptor – codoped (Ba1-xCax)(Ti1-yZry)O3 BCTZ,” Journal of Am. Ceram. Soc., vol. 81(5), pp.1369-73(1998).
21.Hennings, D. and A. Schnell, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics”, J. Am. Ceram. Soc., v65[11], p539-44 (1982)
22.Hennings, D. and W. Mayr, “Thermal decomposition of (BaTi) citrates into barium titanate,” Journal of Solid State Chem., vol. 26, pp.329-338(1978).
23.Pechini, M.P., “Method of preparing lead and alkaline eath titanates and niobates and coating method to form a capacitor,” U.S. Pat. No.3330697 (1967).
24.Kumar, S., “Metal organic resin derived barium titanate﹕Ⅰ. Formation of barium titanium oxycarbonate intermediate,” Journal of Am. Ceram. Soc., vol. 76(3), pp.617-624(1993).
25.Arima, M., Masato Kakihana, Yoshiyuki Nakamura, Masatomo Yashima and Masahiro Yoshimura, “Polymerized complex route to barium titanate powders using barium-titanate mixed-metal citric acid comolex,” Journal of Am. Ceram. Soc., vol. 79(11), pp.2847-2856 (1996).
26.Durán, P., F. Capel, J. Tartaj, D. Gutierrez and C. Moure, “ Heating -rate effect on the BaTiO3 formation by thermal decomposition of metal citrate polymeric precursors,” Solid State Ionics, vol. 141–142, pp.529–539(2001).
27.Cho, Woo-Seok, “Structural evolution and characteristic of BaTiO3 nanoparticles synthesized from polymeric precursor,” Journal of Phys. Chem. Solids, vol. 59, pp.659-666(1998).
28.Leite, E.R., C. M. G. Sousa, E. Longo and J. A. Varela, “Influence of polymerization on the synthesis of SrTiO3:Characteristics of the polymeric precursors and their thermal decomposition,” Ceramics International, vol. 21, pp.143-153(1995).
29.Kakihana, M., Toru Okubo, Momoko Arima, Yoshiyuki Nakamura, Masatomo Yashima and Masahiro Yoshimura, “Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures: Implication for formation of Sr-Ti heterometallic citric acid complex,” Journal of Sol-Gel Science and Technology, vol. 12, pp.95–109 (1998).
30.Szanics, J., Toru Okubo and Asato Kakihana, “Preparation of LiTaO3 powers at reduced temperature by a polymerized complex method,” Journal of Alloys and Compouds, vol. 281, pp.206-210(1998).
31.Paris, E.C., E.R. Leite, E. Longo and J.A. Varela, “Synthesis of PbTiO3 by use of polymeric precursors,” Materials Letters, vol. 37, pp.1-5(2000).
32.Arya, P.R., P. Jha, G.N. Subbanna and A.K. Ganguli, “Polymeric citrate precursor route to the synthesis of nano-sized barium lead titanates,” Materials Research Bulletin, vol. 38, pp.617–628(2003).
33.Chai, Y.L., D.T. Ray, H.S. Liu, C.F. Dai and Y.H. Chang, “Characteristics of La SrCoCuO film and its sensing properties for CO gas,” Materials Science & Engineering, vol.293, pp.39-45(2000).
34.Durán, P., F. Capel, J. Tartaj and C. Moure, “BaTiO3 formation by thermal decomposition of a (BaTi)-citrate polyester resin in air,” Journal of Mater. Res., vol.16, pp.196-209(2000).
35.葉政達,“利用FT-IR和13C-NMR光譜探討檸檬酸製程合成鈦酸鋇陶瓷粉末之研究,” 國立成功大學材料科學及工程研究,87學年度。
36.林世彬,“鋰離子二次電池陰極材料LiNiO2之合成及其性質,” 國立成功大學材料科學及工程研究所,90學年度。
37.NaKamoto, K., “Infrared and Raman spectra of inorganic and coordination compounds. 4th edition,” pp.231-233, John Wily & Sons, U. S. A.(1986).
38.Kakihana, M., Momoko Arima, Yoshiyuki Nakamura, Masatomo Yashima and Masahiro Yoshimura, “Spectroscopic characterization of precursors used in the Pechini-type polymerizable complex processing of barium titanate,” Chemistry of Materials, vol. 11, pp.438-450(1999).
39.Abreu, Jr, A., S. M. Zanetti, M. A. Zanetti, M. A. S. Oliveira and G. P. Thim, “Effect of urea on lead zirconate titanate-Pb(Zr0.52Ti0.48)-nanopowders synthesized by Pechini methed,” Journal of the European Ceramic Society, vol. 25, pp.743-748(2005).
40.Udawatte, C.P., M. Kakihana and M. Yoshimura, “Low temperature synthesis of pure SrSnO3 and (BaxSr1-x)SnO3 solid solution by the polymerized complex method,” Solid State Ionics, vol. 128, pp.217-226(2000).
41.劉逸文,“油性鈦酸鋇漿料之分散及流變性質對薄帶特性及陶瓷體介電強度之影響,” 國立成功大學資源工程研究所碩士論文,91學年度。
42.Durán, P., R, Dionisio Gutierrez, Jesus Tartaj and Carlos Moure, “Densification behavior, microstructure development and dielectric of pure BaTiO3 prepared by thermal decomposition of (Ba,Ti)-citrate polyester resins,” Ceram.Int., vol.28(3), pp.283-29(2002).