| 研究生: |
周彥如 Chou, Yen-Ju |
|---|---|
| 論文名稱: |
以疾病相關之蛋白激酶為核心化簡蛋白質交互作用網路工具 DKNY: A Disease Associated Kinase PPI Network Refinement Tool Combining Microarray Data |
| 指導教授: |
蔣榮先
Chiang, Jung-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 激酶 、疾病 、蛋白質交互作用網路 、交互作用 、網路 、信號傳導 、相關性 、反應路徑 |
| 外文關鍵詞: | pathway, ppi, kinase, disease, signal transduction, interaction |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物反應路徑為目前相當重要的研究,而在生物反應路徑中,信號傳導扮演著極重要的角色,磷酸化反應為主要的信傳導方式,因此探討磷酸化反應直接或間接對其他蛋白質的影響,可對生物反應路徑有更進一步的瞭解。然而,現今天研究中,尚未提供一個工具建立與疾病相關之信號傳導蛋白質交互作用網路,因此在本論文中,我們提出以疾病相關之蛋白激酶為核心化簡蛋白質交互作用網路之工具。本論文先建立與疾病相關聯之蛋白激酶交互作用網路,並將此交互作用網路擴張以得到蛋白激酶直接或間接對其他蛋白質的影響之資訊,接著我們採用「六度分離」理論化簡此網路中的雜訊,並且整合疾病之微陣列實驗資料,利用視覺化呈現給使用者。
本論文提供查詢以疾病相關之蛋白激酶為核心化簡蛋白質交互作用網路之工具,利用此工具,生醫研究者可經由視覺化呈現之蛋白質交互作用網路中,得到可能之調控路徑,並根據分析過之微陣列實驗的結果表現值,得到可能與此疾病相關之異常表現基因。
Studies have shown that signal transduction pathways play key roles in most biological process pathway. Phosphorylation is the critical way of signal transduction. Study the regulation of protein kinase on other proteins can help us to realize biological process pathway further. Besides, we can get more information of disease by combining the protein kinase-related network and disease-related gene expression data. However, the general PPI networks are too complex to see the information in it. In this study, we use statistical method to find disease-related protein kinase and construct protein kinase-related network. In order to decrease the network complexity, we apply Six Degrees of Separation theory to refine the network. Finally, we combined this network with microarray data of the disease.
We present a tool to visualize a disease associated kinase PPI network which is called DKNY. Users can see the possibly regulated path with analyzed express data by using DKNY.
[1] Donal A. Walsh, et al. Purification and Characterization of a Protein Inhibitor of Adenosine 3',5'-Monophosphate-dependent Protein Kinases. Biological Chemistry, Vol. 246 no. 7, 1977-1985, 1971.
[2] Zhizhuang Zhao, et al. Altered Expression of Protein-tyrosine Phosphatase 2C in 293 Cells Affects Protein Tyrosine Phosphorylation and Mitogen-activated Protein Kinase Activation. Biological Chemistry, Vol. 270 no. 20, 11765-11769, 1995.
[3] G. Maning, et al. The Protein Kinase Complement of the Human Genome. Science, vol. 298 no. 5600, 1912 – 1934, 2002.
[4] M. Narayanaswamy, et al. Beyond the clause: extraction of Phosphorylation information from medline abstracts. Bioinformatics, Vol. 21 Suppl. 1, i319-i327, 2005.
[5] Z. Z. Hu, et al. Literature mining and database annotation of protein Phosphorylation using a rule-based system. Bioinformatics, Vol.21 no. 11, 2759-2765, 2005.
[6] Peter J. Kennelly, et al. PHOSPHORYLATION SITE DATABASE http://vigen.biochem.vt.edu/xpd/xpd.htm.
[7] Francesca Diella, et al. Phospho.ELM: A database of experimentally verified Phosphorylation sites in eukaryotic proteins. BMC Bioinformatic, Vol. 5 no. 79, 2004.
[8] Lada A. Adamic, et al. Literature Based Method for Identifying Gene-Disease Connections. Proceedings of the IEEE Computer Society Bioinformatics Conference, 2002.
[9] J. Freudenberg, et al. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatic, Vol. 18 Suppl. 2, S110-S115, 2002.
[10] The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nature Genetics, vol. 25, 2000.
[11] Yanhui Hu, et al. Analysis of Genomic and Proteomic Data Using Advanced Literature Mining. Journal of Proteome Research, Vol. 2, 405-412, 2003.
[12] Michael Rebhan, et al. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics, Vol. 14 no. 8, 656-664, 1998.
[13] Anton Yuryev, et al. Automatic pathway building in biological association networks. BMC Bioinformatics, Vol. 7 no. 171, 2006.
[14] Tor-Kristian Jenssen, et al. A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics, vol.28, 2001.
[15] Jasmin ari , et al. Extraction of regulatory gene/protein networks from Medline. Bioinformatics, Vol.22 no.6, 645-650, 2006.
[16] L. Jason Steggles, et al. Qualitatively modeling and analyzing genetic regulatory networks: a Petri net approach. Bioinformatics, Vol. 23 no. 3, 336-343, 2007.
[17] Shao Li., et al. Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach. Bioinformatics Vol. 22 no. 17, 2143-2150, 2006.
[18] Hee Young Kang, et al. Functional Modules from Protein Networks of Kinome and Cell Cycle in Saccharomyces cerevisiae. Proceedings of the IEEE Computational Systems Bioinformatics Conference, 2004.
[19] Bjorn H Junker, et al. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics, Vol. 7 no. 219, 2006.
[20] Scott A Tomlins, et al. Integrative molecular concept modeling of prostate cancer progression. Nature Genetics, vol.39 no.1, 2007.
[21] Paul Shannon, et al. Cytoscape: A software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, Vol. 13, 2498-2504, 2003.
[22] David J Reiss, et al. Tools enabling the elucidation of molecular pathways active in human disease: Application to Hepatitis C virus infection. BMC Bioinformatics, Vol. 6 no. 154, 2005.
[23] The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nature Genetics, vol. 25, 2000.
[24] Mark Buchanan. Nexus: Small Worlds and the Groundbreaking Science of Networks. Norton, W. W. & Company, Inc. ISBN 0-393-32442-7.
[25] Russell Griggs, et al. UQ study examines six degrees of biological separation. UQ News Online, 15 October 2002. http://www.uq.edu.au/news/index.html?article=3732
[26] Six degrees of biological separation. Institute for Molecular Bioscience. http://www.imb.uq.edu.au/index.html?page=13526&pid=0
[27] Lim, J. et al. A protein–protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell, Vol. 125, 801– 814, 2006.
[28] Lesley H. Greene, et al. Uncovering Network Sytstems Within Protein Structures. Journal of Molecular Biology, Vol. 334, 781-791, 2003.
[29] PJ Harrison, et al. Six degrees of separation: on the prior probability that schizophrenia susceptibility genes converge on synapses, glutamate and NMDA receptors. Molecular Psychiatry, Vol.16, 981-983, 2006.
[30] Michael P. Scheid, et al. Six degrees of separation? Current Biology, Vol. 10, 191-194, 2000.
[31] Chen-Hsiang Yeang, et al. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biology, Vol. 6 no. R62, 2005.
[32] Nicole Radde, et al. Systematic component selection for gene-network refinement. Bioinformatics, Vol. 22 no. 21, 2674-2680, 2006.
[33] BioCarta. http://www.biocarta.com/