| 研究生: |
陳禹翔 Chen, Yu-hsiang |
|---|---|
| 論文名稱: |
同步合成複合奈米金-聚苯胺奈米纖維應用於過氧化氫感測 Nanocomposite comprising gold nanoparticles and polyaniline nanofibers via one-step synthesis for sensing hydrogen peroxide |
| 指導教授: |
溫添進
Wen, Ten-chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 過氧化氫 、界面聚合 、奈米金 |
| 外文關鍵詞: | interfacial polymerization, gold nanoparticles, hydrogen peroxide |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文第一部份主要是探討複合奈米金-聚苯胺奈米纖維之特性研究。使用四氯化金酸為氧化劑,藉由界面聚合的方式,同步聚合出金奈米粒子及聚苯胺的奈米纖維。掃描式電子顯微鏡觀測發現,聚苯胺具有奈米纖維的結構,且聚苯胺奈米纖維結構避免金奈米粒子聚集,形成金奈米粒子,此研究,聚苯胺同時扮演還原劑、基材及保護劑的角色。穿透式電子顯微鏡的觀測結果與掃描式電子顯微鏡一致,金奈米粒子的粒徑約為10-30 nm,與多功能X光薄膜繞射計算出金奈米粒子平均粒徑22.5 nm相符合。傅立葉紅外線光譜證實了高分子的結構,並且發現使用四氯化金酸為氧化劑造成聚苯胺結構改變,與化學分析電子光譜的實驗結果一致。複合奈米金-聚苯胺奈米纖維比單純聚苯胺有較多的氧化態,因此容易水解形成副產物(對苯二酚(hydroquinone)和醌(quinone))。
藉由第一部分的合成方法,可同步製備出金奈米粒子及聚苯胺奈米纖維,結合導電性高分子聚苯胺的高導電性、良好的電化學活性以及金奈米粒子的催化特性,將此奈米複合材料應用在過氧化氫的感測上。中性溶液中,複合奈米金-聚苯胺奈米纖維具有感測過氧化氫的能力,且pH值為7.5時對過氧化氫的感測有較好的靈敏度。使用此複合材料進行過氧化氫感測,感測濃度範圍為0.25 μM至2 mM,電極之應答靈敏度並可達9.53 μA/mM。偵測極限(S/N=3)為0.25 μM且有較快的反應時間(6秒)。
The first part of the the dissertation is on the characterization of the nanocomposite comprising gold nanoparticles and polyaniline nanofibers. Au nanoparticles were generated along with the simultaneous formation of polyaniline(PANI)nanofibers using interfacial polymerization route. Scanning electron microscopic(SEM)revealed that PANI possesses nanofiber structure. The nanofiber structure of PANI acts as not only reducing agent but also matrix to prevent the aggregation of gold nanoparticles. Transmission electron microscopic(TEM)results revealed that particle size of gold nanoparticles is at ca. 10-30 nm which is consistent with the result from the calculation by x-ray diffraction pattern (XRD). X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)results showed that there were more side products and higher oxidized states for the nanocomposite synthesized by using HAuCl4 as oxidant.
On the second part of the dissertation, we extended our work to study the electrochemical sensing properties of the prepared nanocomposite for hydrogen peroxide. The nanocomposite comprising gold nanoparticles and PANI nanofibers possess the sensing ability for hydrogen peroxide. Furthermore, the optimal operation of the nanocomposite for sensing hydrogen peroxide is at pH 7.5. The hydrogen peroxide sensor shows a linear calibration curve over the range from 2.5×10-7 to 2×10-3 M, with a slope and detection limit(S/N=3)of 9.53 μA/mM and 2.5×10-7 M, respectively. In addition, the hydrogen peroxide sensor possesses a fast response time(6 sec)for sensing hydrogen peroxide.
1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua, A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
2. W. Barthlott, C. Neinhuis, Planta, 202, 1(1997).
3. 「科學人雜誌」,特刊 第一期(2003).
4. 呂世源,奈米新世界,科學發展月刊,359,4 (2003).
5. 林景正、賴宏仁,奈米材料與發展趨勢,工業材料,153,95 (1999).
6. 陳郁文,奈米材料在觸媒上的應用,化工,5,21(1998).
7. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111(1980).
8. R. DeSurville, M. Jozefowicz, L. Yu, J. Perichon, R. Buvet, Electrochim. Acta, 13, 1451(1968).
9. J. Yue, A. J. Epstein, Macromolecules, 24, 4449(1991).
10. M. Lapkowski, E. M. Genies, J. Electroanal. Chem., 279, 157 (1990).
11. H. Yoon, B. S. Jung, H. Lee, Synth. Met., 41, 699(1991).
12. A. Bhattacharga, A. De, S. N. Bhattacharga, Synth. Met., 65, 35 (1994).
13. H. Yamato, W. Wernet, M. Ohwa, B. Rotinger, Synth. Met., 55, 3550(1993).
14. J. Roncali, J. Chem. Rev., 92, 711(1992).
15. S. Hotta, M. Soga, N. Sonoda, Synth. Met., 24, 233(1988).
16. F. Garnier, G. Tourillon, M. Gazard, J. C. Dubois, J. Electroanal. Chem., 148, 299(1983).
17. M. Satoh, K. Kaneto, K. Yoshino, J. Chem. Soc., 1629(1984).
18. 黃黎明,聚(2,5-二甲氧苯胺)之電致變色及電性研究,國立成功大學化學系博士論文(2004).
19. D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc., 84, 3618(1962).
20. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu, S. I. Yaniger, Mol. Liqu. Cryst., 121, 173(1985).
21. J. Bacon, R. N. Adams, J. Am. Chem. Soc., 90, 6596(1968).
22. R. A. Cox, E. Buncel, in The Chemistry of Hydrazo, Azo, Azoxy Groups, S. Patel Ed., Wiley, New York, Part 2, 775(1975).
23. E. M. Genies, M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
24. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., 177, 281(1984).
25. L. C. Robert and S. C. Yang, Synth. Met., 29, 337(1989).
26. T. Ohsawa, T. Kabata and O. Kimura, Synth. Met., 29, 203(1989).
27. P. Pfluger, O. B. Street, J. Chem. Phys., 80, 544(1984).
28. 黃俊益、吳春桂,有機導電高分子/無機金屬氧化物複合材料的合成與性質探討(2001).
29. 蘇品書,超微粒子材料技術,復漢出版社(1989).
30. 莊萬發,超微粒子理論應用,復漢出版社(1995).
31. Boutonet, J. Colloid Interf. Sci., 148, 80(1992).
32. W. P. Halperin, Rev. of modern Phys., 58, 532(1986).
33. D. L. Feldhein, C. D. Keating, Chem. Soc. Rev., 27, 1(1998).
34. Y. W. Du, J. Appl. Phys., 63, 4100(1988).
35. L. Brus, Nature, 351, 301(1991).
36. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett., 56, 2379(1990).
37. 工研院工業材料研究所,材料奈米科技專刊,臺北:經濟部技術處 (2001).
38. 徐國財、張立德,奈米複合材料,化學工業出版社(2002).
39. 柯揚船、皮特.斯壯、陳憲偉,聚合物-無機奈米複合材料,五南圖書出版股份有限公司(2004).
40. J. M. Gloaguen, J. M. Lefebvre, Polymer, 42, 5841(2001).
41. J. L. Leblance, J. Appl. Polym. Sc., 78, 1541(2000).
42. Nanomaterials:synthesis, properties, and applications, Edelstein, A. S. Bristol; Institute of Physics Pub(1996).
43. 劉仲明、郭東瀛,奈米材料,經濟部工業局,32(2002).
44. 謝志軒、陳東煌,Ni/PMMA奈米複合材料之製備,國立成功大學化學系碩士論文(2001).
45. 吳思翰、陳東煌,金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學系碩士論文(2004).
46. Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem., 121, 105(1996).
47. X. Li, G. Lu, S. Li, J. Mater. Sci. Lett., 15, 397(1996).
48. 吳建成、陳東煌,樹狀高分子包覆鎳奈米粒子及逐層自組裝奈米結構複合膜之製備,國立成功大學化學系碩士論文(2003).
49. 張立德編撰,奈米材料,化學工業出版社(2000).
50. 張立德、牟季美編撰,奈米材料和奈米結構,科學出版社(2001).
51. 張志焜、崔作林編撰,奈米技術和奈米材料,國防工業出版社(2000).
52. A. A. Athawale, S. V. Bhagwat, P. P. Katre, Sensors and Actuators B, 114, 263(2006).
53. T. D. Castillo-Castro, E. Larios-Rodriguez, Z. Molina-Arenas, M. M. Castillo-Ortega, J. Tanori, Composites:Part A, 38, 107(2007).
54. Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang, L. Jin, Biosensors and Bioelectronics, 21, 1996(2006).
55. X. Luo, A. J. Killard, A. Morrin, M. R. Smyth, Analytica Chimica Acta, 575, 39(2006).
56. J. Li, X. Lin, Biosensors and Bioelectronics, 22, 2898 (2007).
57. Y. Ma, N. Li, C. Yang, X. Yang, Colloids and Surfaces A, 269, 1(2005).
58. E. P. Giannelis, Adv. Mater., 8, 29(1996).
59. S. Komarneni, J. Mater. Chem., 2, 1219(1992).
60. R. Roy, S. Komameni, D. M. Roy, Mater. Res. Soc. Symp. Proc., 22, 347(1984).
61. J. Wen, G. L. Wilkes, Chem. Mater., 8, 1667(1996).
62. D. Y. Godovsky, Adv. Polym. Sci., 119, 79(1995).
63. B. M. Novak, Adv. Mater., 5, 422(1993).
64. R. Yokota, R. Horiuchi, M. Kochi, H. Soma, I. Mita, J. Polym. Sci.: Polym. Letter, 26, 215(1988).
65. W. S. Shi, H. Y. Peng, L. Xu, N. Wang, Y. H. H. Tang, S. T. Lee, Adv. Mater., 12, 1927(2000).
66. S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, M. F. Bertino, Chem. Mater., 17, 5941(2005).
67. 王中林,自然科學進展,10, 586(2000).
68. J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc., 125, 314(2003).
69. J. Huang, R. B. Kaner, J. Am. Chem. Soc., 126, 851(2004).
70. J. Huang, R. B. Kaner, Angew. Chem. Int. Ed., 43, 5817(2004).
71. J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, Chem. Eur. J., 10, 1314(2004).
72. J. Huang, R. B. Kaner, Chem. Commun., 367(2006).
73. D. Pan, J. Chen, S. Yao, L. Nie, J. Xia, W. Tao, Sensors and Actuators B, 104, 68(2005).
74. F. Gao, R. Yuan, Y. Chai, S. Chen, S. Cao, M. Tang, J. Biochem. Biophys. Methods, 70, 407(2007).
75. H. Zhou, H. Chen, S. Luo, J. Chen, W. Wei, Biosensors and Bioelectronics, 20, 1305(2005).
76. X. Feng, G. Yang, Q. Xu, W. Hou, J. J. Zhu, Macromol. Rapid Commun., 27, 31(2006).
77. Y. Wang, Z. Liu, B. Han, Z. Sun, Y. Huang, G. Yang, Langmuir, 21, 833(2005).
78. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley: Reading, MA(1978).
79. K. Bobzin, E. Lugscheider, M. Maes, P. Immich, S. Bolz ., Thin Solid Films, 515, 3681(2007).
80. G. A. Planes, G. M. Morales, M. C. Miras, C. Barbero, Synth. Met., 97, 223(1998).
81. M. V. Kulkarni, A. K. Viswanath, R. Marimuthu, T. Seth, J. Polym. Sci. Pol. Chem., 42, 2043(2004).
82. P. Manisankar, C. Vedhi, G. Selvanathan, J. Polym. Sci. Pol. Chem., 43, 1702(2005).
83. C. Mailherandolph, J. Desilvestro, J. Electroanal. Chem., 262, 289 (1989).
84. D. W. Hatchett, M. Josowicz, J. Janata, Chem. Mater., 11, 2989(1999).
85. X. Zhang, H. Shi, B. Q. Xu, Catalysis Today, 122, 330(2007).
86. F. Beck, Electrochim. Acta, 33, 839(1988).
87. Y. K. Zhou, B. L. He, W. J. Zhou, H. L. Li, J. Electrochem. Soc., 151, A1052(2004).
88. T. C. Wen, L. M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9(2001).
89. W. C. Chen, T. C. Wen and A. Gopalan, J. Electrochem. Soc., 148, E427(2001).
90. K. Schachl, H. Alemu, K. Kalcher, J. Jezkova, I. Svancara, K. Vytras, Analyst, 122, 985(1997).
91. S. Yao, J. Xu, Y. Wang, X. Chen, Y. Xu, S. Hu, Analytica Chimica Acta, 557, 78(2006).