簡易檢索 / 詳目顯示

研究生: 李翔雲
Li, Sing-Yun
論文名稱: 組合濺射探索Zn-Sn-O (ZTO)透明導電膜成分擴散以及FeNiMoCrAl高熵合金薄膜電催化劑製備
Exploring Zn-Sn-O (ZTO) Composition Spreads and FeNiMoCrAl High Entropy Alloy Thin Film Electrocatalyst with Combinatorial Sputtering
指導教授: 申永輝
Shen, Yun-Hwei
共同指導: 丁志明
Ting, Jyh-Ming
張高碩
Chang, Kao-Shuo
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 透明導電膜組合式濺鍍高熵合金薄膜析氧反應表面電子結構
外文關鍵詞: SnO, ZnO, ZTO, TCO, Combinatorial, high entropy alloy, thin film, oxygen evolution reaction, surface electronic structure
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分成兩部分研究,第一部分為具梯度之組合式濺鍍製備ZTO透明導電膜,第二部分為共濺鍍之組合式濺鍍製備高熵合金催化劑。
    透明導電氧化物薄膜 (transparent conducting oxide, TCO) 由於其高透明度和優異的導電性而被廣泛用作太陽能電池和顯示器的電極。因此,Zn-Sn-O (ZTO) 等多組分氧化物引起了廣泛關注。儘管ZTO中沒有昂貴的元素,但製造和研究具有不同Zn/Sn比的ZTO 是昂貴且耗時的,在這項工作中,應用組合方法的概念來沉積交替的ZnO 和 SnO 楔,兩個傾斜表面接觸以形成具有均勻厚度的薄膜。如此製備的ZTO薄膜因此具有跨膜的組成分佈,進而研究ZTO薄膜的晶體結構和物理性質。
    高熵合金(high entropy alloy, HEA)催化劑以不同形態的薄膜催化劑在氣體析氧反應(oxygen evolution reaction, OER)中提供了優於催化劑顆粒的顯著優勢,所以利用了濺射沉積的優勢在此論述了用於析氧反應的HEA薄膜電催化劑,不僅研究了沉積狀態下的催化劑特性,而且還研究了 OER 期間和之後的催化劑特性,為了進行比較,本研究製備了一元、二元、三元、四元、五元薄膜催化劑。使用密度函數理論計算在實驗和理論上研究了由於添加金屬引起的表面電子結構改性。證明了濺射的 FeNiMoCrAl 高熵薄膜的OER性能優於所有文獻的HEA催化劑,具有強大的電催化活性,在 10 mAcm-2 下具有220 mV的低過電勢,並持續50 小時測試,在 10 和 100 mAcm-2 的不同恆定電流密度下具有出色的電化學穩定性。此外,我們還研究了OER過程中的微觀結構轉變,這對於理解 HEA 電催化劑提供的 OER 機理很重要,這樣的發現將有助於未來的催化劑設計。

    This paper is divided into two parts. The first part is the ZTO gradient film by combinatorial sputtering. The ZTO thin film thus prepared has compositional spread across the film. The electrical resistance and crystallinity decreases and increases with the Zn concentration. The average transmittance of the ZTO thin film is 96.8%, and the optimized sheet resistance is 24Ω/□ at Zn-rich side. The second part is the high-entropy alloy catalyst by combined sputtering of co-sputtering. The finding is important since it bears information for future catalyst design. We demonstrate that the best-performed catalyst outperforms all the reported HEA catalysts, giving an outstanding overpotential of 220 mV at 10 mA cm-2, and excellent electrochemical stability at different constant current densities of 10 and 100 mA cm-2 for 50 h.

    目 錄 摘 要 i 目 錄 xxxvi 表 目 錄 xxxvii 圖 目 錄 xxxviii 第一章 緒 論 1 1-1 前言與研究背景 1 1-1-1 磁控濺鍍技術 1 1-1-2 透明導電膜 2 1-1-3 高熵材料 4 1-1-4 綠氫(催化劑-析氧反應及析氫反應) 4 1-2 研究動機及目的 6 1-2-1 具梯度之組合式濺鍍製備ZTO透明導電膜 6 1-2-2 共濺鍍之組合式濺鍍製備高熵合金催化劑 7 第二章 相關理論與文獻回顧 10 2-1 濺鍍(Sputter)的原理 10 2-1-1 直流/射頻磁控濺鍍原理 10 2-1-2 反應濺鍍 12 2-1-3 離子轟擊 13 2-2 透明導電膜理論 15 2-2-1 導電特性 16 2-2-2 光學特性 18 2-2-3 ITO透明導電膜 20 2-2-4 ZnO透明導電膜的潛力與挑戰 21 2-3 高熵合金 21 2-3-1 高熵效應 22 2-3-2 晶格應變效應 22 2-3-3 緩慢擴散效應 22 2-3-4 雞尾酒效應 23 2-3-5 高熵合金合成 24 2-4 催化劑 25 2-4-1 析氧反應 25 2-4-2 過電位 26 2-4-3 Tafel slope 27 2-4-4 交換電流密度 27 2-4-5 析氧反應機制 28 2-4-6 OER電催化劑 29 2-5 密度泛函理論 30 第三章 實驗步驟 33 3-1 實驗流程概述 33 3-1-1 具梯度之組合式濺鍍製備ZTO透明導電膜 33 3-1-2 共濺鍍之組合式濺鍍製備高熵合金催化劑 35 第四章 結果與討論 43 4-1 具梯度之ZTO透明導電膜 43 4-2 FeNiMoCrAl高熵合金催化劑 55 第五章 結 論 104 5-1 具梯度之ZTO透明導電膜 104 5-2 FeNiMoCrAl高熵合金催化劑 104 參考文獻 105 表 目 錄 表 2-1壓力與頻率對離子密度及能量的影響 14 表4-1金屬氧化表明所有樣品的濃度 101 表 4-2 Fitted parameters of the elements in equivalent circuits at applied potentials of 1.51 V for the obtained catalysts 102 表4-3 Comparison of OER activity among HEAs 103 圖 目 錄 圖1 1. 能源圖 6 圖1-2. 催化劑電裂解水槽 6 圖2-1. 靶材表層濺射過程 14 圖2-2. HEA核心效應示意圖 24 圖2-3. 電催化水分解示意圖 25 圖2-4. (a) HER(紅色)和 OER(藍色)電極的極化曲線。j0是交流電流。 (b) vs. log i圖,交換電流密度 (i0) 可以通過將曲線外推到  = 0得到斜率 b1 和 b2 是 Tafel 斜率,斜率越大表明電極動力學越慢 27 圖2-5. 鹼性條件和酸性條件下的OER機制 29 圖2-6. 電子狀態在開放系統中的示意圖 32 圖3-1. 二濺射組合式濺鍍設備示意圖 34 圖3-2. 具梯度薄膜製備步驟 35 圖3-3. 場發射掃描電子顯微鏡(SEM,JOEL6701) 38 圖3-4. -step 38 圖3-5. X 射線衍射儀 (GIXRD, D/MAX2500) 39 圖3-6. UV/Vis/NIR(LAMBDATM 950,PerkinElmer) 39 圖3-7. 四點探針 40 圖3-8. 穿透射電子顯微鏡 (TEM) (J21001F,JEOL) 40 圖3-9. 三濺射槍組合式濺鍍設備示意圖 36 圖3-10. XPS (Versaprobe PHI 5000) 分析表面化學分析儀 41 圖3-11. 拉曼光譜(Renishaw Invia Raman Microprobe) 41 圖3-12. Autolab (Muti Autolab/M204) 42 圖3-13. ICP-MS(Element XR,thermo) 42 圖4-1. ZnO和SnO不同梯度位置的 SEM截面圖 45 圖4-2. ZnO和SnO不同梯度位置的α-step掃描圖 46 圖 4-3 (a) ZnO 和 SnO 楔形中不同位置的底部和頂部傾斜四邊形之間的距離。這些位置在圖4-4.中進行了描述,在沿傾斜表面的不同位置獲得(b)ZnO和 (c)SnO楔形物的 XRD 圖 48 圖 4-4.十層合成交替的 ZnO 和 SnO 楔形物,分別在每個分析中使用 TEM、四點和 XRD 標記 49 圖4-5. (a)九張 SEM 橫截面圖像 和 (b) ZnO和SnO楔形物的厚度。 50 圖4-6. 從位置 A(Sn-rich)到 F(Zn-rich)薄膜的 XRD 圖 51 圖 4-7. ZTO 薄膜在位置 (a) A、(b) B、(c) C 和 (d) D 處的橫截面視圖。(e) EDS 分析顯示不同位置處 Zn 和 Sn 的原子百分比。 這些位置在圖4-4 中進行了描述 53 圖4-8. (a) ZTO薄膜的透射率和 (b) 薄層片電阻 54 圖4-9. (a) FeNiMoCrAl 的表面形貌,以及 (b) FeNiMoCrAl 和 (c) FeNiMoCoAl 的截面圖。 (d) 使用 EDS 測定的 FeNiMoCrAl(外環)和 FeNiMoCoAl (內環)中的金屬濃度 64 圖4-10. (a) FeNi (b) FeMo (c) NiMo (d) FeNiMo (e) FeNiMoCo (f) FeNiMoCr (g) FeNiMoCrCo (h) FeNiMoCoAl (i) FeNiMoCrAl 薄膜沉積在 NF 上的表面貌 65 圖4-11. FeNiMoCrAl 的 XRD 圖譜 66 圖4-12. FeNiMoCrAl高熵合金催化劑(a) TEM and (b) HRTEM images, (c) SAED pattern, and (d) EDS-mapping 66 圖4-13. FeNiMoCrAl 的詳細 XPS (a) Fe 2p、(b) Ni 2p、(c) Mo 3d、(d) Cr 2p、(e) Al 2p 和 (f) O 1s 69 圖4-14. High resolution (a) Fe 2p、(b) Ni 2p、(c) Mo 3d、(d) Co 2p、(e) Cr 2p、(f) Al 2p 和 (g) O 1s XPS 光譜 75 圖4-15. FeNiMoCrAl 的拉曼光譜 76 圖4-16. (a) LSV curves, (b) overpotential comparison, (c) Tafel slopes, (d) Nyquist plots, and (e) the plot of j against the scan rate of thin film metallic catalysts. (f) Stability of binary FeNi, ternary FeNiMo, and quinary FeNiMoCrAl samples. (g) Long-term durability tests of FeNi at 10 mA cm-2 and FeNiMoCrAl at 10 mA cm-2 and 100 mA cm-2 80 圖4-17. CV curves of (a) FeNi, (b) NiMo, (c) FeNiMo, (d) FeNiMoCo, (e) FeNiMoCr, (f) FeNiMoCoCr, (g) FeNiMoCoAl, and (h) FeNiMoCrAl 84 圖4-18. Recorded LSV curves after selected cycles of (a) FeMo, (b) FeNiMo, and (c) FeNiMoCrAl 86 圖4-19. (a) Overpotential decreases with Ni3+ concentration and (b) Tafel slope drops with the metal concentration 87 圖4-20. (a) DFT structure model, (b) Calculated adsorption energy of atomic *O as a function of the d-band center energy, and (c) OER overpotential as a function of E*OOH - E*O88 圖4-21. The calculated site-dependent PDOS of individual metal components, (a) Fe, (b) Ni, (c) Mo, and (d) Cr in FeNiMoCrAl89 圖4-22. Phase transformation and structural evolution during OER. “0” denotes the pre-OER stage 90 圖4-23. TEM analysis of Stage 2 FeNiMoCrAl. (a) TEM cross sectional image, (b) SAED pattern of (a), (c) STEM-EDS mapping, and (d) oxygen mapping and distribution in the bi-layered structure 91 圖4-24. (a) and (b) SEM images of post-OER FeNiMoCrAl. (c) TEM cross sessional image. (d) HRTEM image and (e) SAED pattern of the area in the yellow box in c. (f) HRTEM image and (g) SAED pattern of the area in the red boxed in c. (h) EDS mapping and (i) oxygen mapping and distribution in the bi-layered structure 92 圖4-25. Raman spectra of all post-OER samples 93 圖4-26. XPS depth profiling on the post-OER FeNiMoCrAl sample, (a) survey, (b) Ni 2p, (c) Fe 2p, (d) Mo 3d, (e) Cr 2p, and (f) Al 2p spectra 100 圖4-27. After OER, Mo and Al, as well as Cr, in the HEA are dissolved in the electrolyte 100

    [1] S. Bibi et al., "Synthesis and characterization of binary ZnO–SnO2 (ZTO) thin films by e-beam evaporation technique." Applied Physics A, 124, 4, 1-8, (2018).
    [2] J. C. G .Destriau, "Phys." (1936).
    [3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films." Journal of applied physics, 65, 9, 3610-3616, (1989).
    [4] A. S. V. Vasu, Thin Solid Films, 193/194,696, (1990).
    [5] K. F. T. Maruyama, Thin Solid Films, 203,297, (1991).
    [6] J. S. M. Bender, Appl.Phys.A, 69,397, (1999).
    [7] Y. S. T. Futagami, T. Yasui, Jpn. J., Appl.Phys., Part1,37,6210, (1998).
    [8] T. N. T. Ishida, Thin Solid Films, 388,322, (2001).
    [9] M. F. C. Ganzorig, Appl.Phys.Lett., 77,4211, (2000).
    [10] D. Romero, M. Schaer, L. Zuppiroli, B. Cesar, and B. Francois, "Effects of doping in polymer light‐emitting diodes." Applied physics letters, 67, 12, 1659-1661, (1995).
    [11] F. Huang, A. MacDiarmid, and B. Hsieh, "An iodine-doped polymer light-emitting diode." Applied physics letters, 71, 17, 2415-2417, (1997).
    [12] C. A. A. Yamamori, T. Fritz, K.Leo, Appl.Phys.Lett., 73,729, (1998).
    [13] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes." Semiconductor science and technology, 20, 4, S35, (2005).
    [14] C. Guillen and J. Herrero, "TCO/metal/TCO structures for energy and flexible electronics." Thin Solid Films, 520, 1, 1-17, (2011).
    [15] D. A. Keller et al., "Oxygen concentration as a combinatorial parameter: The effect of continuous oxygen vacancy variation on SnO2 layer conductivity." Materials Chemistry and Physics, 208, 289-293, (2018).
    [16] P. Nunes, E. Fortunato, P. Tonello, F. B. Fernandes, P. Vilarinho, and R. Martins, "Effect of different dopant elements on the properties of ZnO thin films." Vacuum, 64, 3-4, 281-285, (2002).
    [17] P. F. Ndione et al., "Tuning the physical properties of amorphous In–Zn–Sn–O thin films using combinatorial sputtering." MRS Communications, 6, 4, 360-366, (2016).
    [18] C. Suh, C. Gorrie, J. Perkins, P. Graf, and W. Jones, "Strategy for the maximum extraction of information generated from combinatorial experimentation of Co-doped ZnO thin films." Acta materialia, 59, 2, 630-639, (2011).
    [19] H. Çolak and H. İ. Mercan, "Influence of thallium doping on structural, electrical, and optical properties of ZnO nanorods for TCO applications." Journal of Materials Science: Materials in Electronics, 1-13, (2022).
    [20] S. Muraleedharan and A. M. Ashok, "Efficacy of hydrothermally grown ASnO3 (A-Ca, Sr, Ba) transparent conducting oxide thin films." Physica B: Condensed Matter, 625, 413463, (2022).
    [21] C. Esthan et al., "Transparent heterojunctions of Cu-based delafossites n-CuInO2/p-CuGaO2 by reactive evaporation method for transparent electronic applications." Vacuum, 197, 110808, (2022).
    [22] R. Ramarajan et al., "Boltzmann conductivity approach for charge transport in spray-deposited transparent Ta-doped SnO2 thin films." Journal of Alloys and Compounds, 897, 163159, (2022).
    [23] F.-H. Wang, M.-S. Chen, Y.-L. Jiang, H.-W. Liu, and T.-K. Kang, "Fabrication and characterization of sputtered Mg and F co-doped ZnO thin films with different substrate temperature for silicon thin-film solar cell applications." Journal of Alloys and Compounds, 897, 163174, (2022).
    [24] V. Sharma, R. Vyas, P. Bazylewski, G. Chang, K. Asokan, and K. Sachdev, "Probing the highly transparent and conducting SnO x/Au/SnO x structure for futuristic TCO applications." RSC Advances, 6, 35, 29135-29141, (2016).
    [25] T.-F. Chung et al., "Investigation of nanotwins in the bimodal-structured Fe22Co22Ni20Cr22Mn14 alloy subjected to high-strain-rate deformation at cryogenic temperatures." Materials Characterization, 170, 110667, (2020).
    [26] Y. Qiu, S. Thomas, M. A. Gibson, H. L. Fraser, and N. Birbilis, "Corrosion of high entropy alloys." npj Materials degradation, 1, 1, 1-18, (2017).
    [27] M.-H. Tsai and J.-W. Yeh, "High-entropy alloys: a critical review." Materials Research Letters, 2, 3, 107-123, (2014).
    [28] G. Laplanche et al., "Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy." Journal of Alloys and Compounds, 746, 244-255, (2018).
    [29] C. Oses, C. Toher, and S. Curtarolo, "High-entropy ceramics." Nature Reviews Materials, 1-15, (2020).
    [30] H.-J. Qiu et al., "Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction." ACS Materials Letters, 1, 5, 526-533, (2019).
    [31] X. Cui, B. Zhang, C. Zeng, and S. Guo, "Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction." MRS Communications, 8, 3, 1230-1235, (2018).
    [32] R. Q. Yao et al., "Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction." Advanced Functional Materials, 31, 10, 2009613, (2021).
    [33] J. Huang, P. Wang, P. Li, H. Yin, and D. Wang, "Regulating electrolytic Fe0. 5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution." Journal of Materials Science & Technology, 93, 110-118, (2021).
    [34] Z. Jin et al., "Nanoporous Al‐Ni‐Co‐Ir‐Mo high‐entropy alloy for record‐high water splitting activity in acidic environments." Small, 15, 47, 1904180, (2019).
    [35] J. Tang, J. Xu, Z. Ye, X. Li, and J. Luo, "Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction." Journal of Materials Science & Technology, 79, 171-177, (2021).
    [36] M. W. Glasscott et al., "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis." Nature communications, 10, 1, 1-8, (2019).
    [37] H. Li et al., "A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts." Chemical Communications, 57, 21, 2637-2640, (2021).
    [38] H. Wang, R. Wei, X. Li, X. Ma, X. Hao, and G. Guan, "Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction." Journal of Materials Science & Technology, 68, 191-198, (2021).
    [39] K. Huang et al., "Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst." Journal of Materials Chemistry A, 8, 24, 11938-11947, (2020).
    [40] Z. Lv, X. Liu, B. Jia, H. Wang, Y. Wu, and Z. Lu, "Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions." Scientific reports, 6, 1, 1-11, (2016).
    [41] Z. Jin et al., "Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide As highly stable electrocatalyst in Zn–Air batteries." ACS Materials Letters, 2, 12, 1698-1706, (2020).
    [42] A. Hodge, Y. Wang, and T. Barbee Jr, "Large-scale production of nano-twinned, ultrafine-grained copper." Materials Science and Engineering: A, 429, 1-2, 272-276, (2006).
    [43] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, "Metal nanowire networks: the next generation of transparent conductors." Advanced materials, 26, 39, 6670-6687, (2014).
    [44] V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, and I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities." Surface and coatings technology, 122, 2-3, 290-293, (1999).
    [45] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors." Science and Technology of Advanced Materials, (2010).
    [46] M. Tahir et al., "High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential." ACS Energy Letters, 2, 9, 2177-2182, (2017).
    [47] S. Seki, Y. Sawada, and T. Nishide, "Indium–tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride." Thin Solid Films, 388, 1-2, 22-26, (2001).
    [48] D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts." Acta materialia, 122, 448-511, (2017).
    [49] Y. Jien-Wei, "Recent progress in high entropy alloys." Ann. Chim. Sci. Mat, 31, 6, 633-648, (2006).
    [50] Y. Xin et al., "High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities." Acs Catalysis, 10, 19, 11280-11306, (2020).
    [51] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H. M. Chen, "Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives." Chemical Society Reviews, 46, 2, 337-365, (2017).
    [52] Q. Ma et al., "Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts." Journal of Alloys and Compounds, 820, 153438, (2020).
    [53] L. J. S. W. Kohn, Phys. Rev., 140, A1133–A1138, (1965).
    [54] T. O. a. H. Kino, Phys. Rev. B, 72, 045121, (2005).
    [55] J. M. Soler et al., "The SIESTA method for ab initio order-N materials simulation." Journal of Physics: Condensed Matter, 14, 11, 2745, (2002).
    [56] P. E. Blochl, Phys. Rev. B, 41, R5414 (1990).
    [57] S. S. Datta, Microst, 28, 253-278, (2000).
    [58] J. Schmidhuber, "Deep learning in neural networks: An overview." Neural networks, 61, 85-117, (2015).
    [59] T. Yamashita and P. Hayes, "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials." Applied surface science, 254, 8, 2441-2449, (2008).
    [60] R. C. Pawar, Y. Pyo, S. H. Ahn, and C. S. Lee, "Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride." Applied Catalysis B: Environmental, 176, 654-666, (2015).
    [61] L. Ma, S.-S. Lyu, Y. Dai, X.-Y. Pei, D.-C. Mo, and Y.-X. Fu, "Lithium storage properties of NiO/reduced graphene oxide composites derived from different oxidation degrees of graphite oxide." Journal of Alloys and Compounds, 810, 151954, (2019).
    [62] A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, and N. S. McIntyre, "New interpretations of XPS spectra of nickel metal and oxides." Surface Science, 600, 9, 1771-1779, (2006).
    [63] P. W. Menezes, A. Indra, V. Gutkin, and M. Driess, "Boosting electrochemical water oxidation through replacement of O h Co sites in cobalt oxide spinel with manganese." Chemical Communications, 53, 57, 8018-8021, (2017).
    [64] R. Ding, L. Qi, M. Jia, and H. Wang, "Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation." Nanoscale, 6, 3, 1369-1376, (2014).
    [65] G. Allen, S. Harris, J. Jutson, and J. Dyke, "A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy." Applied surface science, 37, 1, 111-134, (1989).
    [66] J. Słoczyński, J. Janas, T. Machej, J. Rynkowski, and J. Stoch, "Catalytic activity of chromium spinels in SCR of NO with NH3." Applied Catalysis B: Environmental, 24, 1, 45-60, (2000).
    [67] P. M. Sherwood, "Introduction to Studies of Aluminum and its Compounds by XPS." Surface Science Spectra, 5, 1, 1-3, (1998).
    [68] H.-J. Qiu et al., "Platinum cluster/nanoparticle on CoO nanosheets with coupled atomic structure and high electrocatalytic durability." ACS Applied Energy Materials, 1, 5, 1840-1845, (2018).
    [69] L.-K. Wu et al., "A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction." Journal of Materials Chemistry A, 5, 21, 10669-10677, (2017).
    [70] O. N. Shebanova and P. Lazor, "Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum." Journal of Solid State Chemistry, 174, 2, 424-430, (2003).
    [71] Y. Wang et al., "Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor." Nano Energy, 81, 105606, (2021).
    [72] X. Bo et al., "Capturing the active sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction." Energy & Environmental Science, 13, 11, 4225-4237, (2020).
    [73] T. X. Nguyen, Y. H. Su, C. C. Lin, and J. M. Ting, "Self‐Reconstruction of Sulfate‐Containing High Entropy Sulfide for Exceptionally High‐Performance Oxygen Evolution Reaction Electrocatalyst." Advanced Functional Materials, 31, 48, 2106229, (2021).
    [74] G. Fang et al., "Multi-component nanoporous alloy/(oxy) hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries." Applied Catalysis B: Environmental, 268, 118431, (2020).
    [75] Z. Ding et al., "High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst." Advanced Sustainable Systems, 4, 5, 1900105, (2020).

    下載圖示
    2026-01-01公開
    QR CODE