| 研究生: |
李翔雲 Li, Sing-Yun |
|---|---|
| 論文名稱: |
組合濺射探索Zn-Sn-O (ZTO)透明導電膜成分擴散以及FeNiMoCrAl高熵合金薄膜電催化劑製備 Exploring Zn-Sn-O (ZTO) Composition Spreads and FeNiMoCrAl High Entropy Alloy Thin Film Electrocatalyst with Combinatorial Sputtering |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 共同指導: |
丁志明
Ting, Jyh-Ming 張高碩 Chang, Kao-Shuo |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 透明導電膜 、組合式濺鍍 、高熵合金 、薄膜 、析氧反應 、表面電子結構 |
| 外文關鍵詞: | SnO, ZnO, ZTO, TCO, Combinatorial, high entropy alloy, thin film, oxygen evolution reaction, surface electronic structure |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分成兩部分研究,第一部分為具梯度之組合式濺鍍製備ZTO透明導電膜,第二部分為共濺鍍之組合式濺鍍製備高熵合金催化劑。
透明導電氧化物薄膜 (transparent conducting oxide, TCO) 由於其高透明度和優異的導電性而被廣泛用作太陽能電池和顯示器的電極。因此,Zn-Sn-O (ZTO) 等多組分氧化物引起了廣泛關注。儘管ZTO中沒有昂貴的元素,但製造和研究具有不同Zn/Sn比的ZTO 是昂貴且耗時的,在這項工作中,應用組合方法的概念來沉積交替的ZnO 和 SnO 楔,兩個傾斜表面接觸以形成具有均勻厚度的薄膜。如此製備的ZTO薄膜因此具有跨膜的組成分佈,進而研究ZTO薄膜的晶體結構和物理性質。
高熵合金(high entropy alloy, HEA)催化劑以不同形態的薄膜催化劑在氣體析氧反應(oxygen evolution reaction, OER)中提供了優於催化劑顆粒的顯著優勢,所以利用了濺射沉積的優勢在此論述了用於析氧反應的HEA薄膜電催化劑,不僅研究了沉積狀態下的催化劑特性,而且還研究了 OER 期間和之後的催化劑特性,為了進行比較,本研究製備了一元、二元、三元、四元、五元薄膜催化劑。使用密度函數理論計算在實驗和理論上研究了由於添加金屬引起的表面電子結構改性。證明了濺射的 FeNiMoCrAl 高熵薄膜的OER性能優於所有文獻的HEA催化劑,具有強大的電催化活性,在 10 mAcm-2 下具有220 mV的低過電勢,並持續50 小時測試,在 10 和 100 mAcm-2 的不同恆定電流密度下具有出色的電化學穩定性。此外,我們還研究了OER過程中的微觀結構轉變,這對於理解 HEA 電催化劑提供的 OER 機理很重要,這樣的發現將有助於未來的催化劑設計。
This paper is divided into two parts. The first part is the ZTO gradient film by combinatorial sputtering. The ZTO thin film thus prepared has compositional spread across the film. The electrical resistance and crystallinity decreases and increases with the Zn concentration. The average transmittance of the ZTO thin film is 96.8%, and the optimized sheet resistance is 24Ω/□ at Zn-rich side. The second part is the high-entropy alloy catalyst by combined sputtering of co-sputtering. The finding is important since it bears information for future catalyst design. We demonstrate that the best-performed catalyst outperforms all the reported HEA catalysts, giving an outstanding overpotential of 220 mV at 10 mA cm-2, and excellent electrochemical stability at different constant current densities of 10 and 100 mA cm-2 for 50 h.
[1] S. Bibi et al., "Synthesis and characterization of binary ZnO–SnO2 (ZTO) thin films by e-beam evaporation technique." Applied Physics A, 124, 4, 1-8, (2018).
[2] J. C. G .Destriau, "Phys." (1936).
[3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films." Journal of applied physics, 65, 9, 3610-3616, (1989).
[4] A. S. V. Vasu, Thin Solid Films, 193/194,696, (1990).
[5] K. F. T. Maruyama, Thin Solid Films, 203,297, (1991).
[6] J. S. M. Bender, Appl.Phys.A, 69,397, (1999).
[7] Y. S. T. Futagami, T. Yasui, Jpn. J., Appl.Phys., Part1,37,6210, (1998).
[8] T. N. T. Ishida, Thin Solid Films, 388,322, (2001).
[9] M. F. C. Ganzorig, Appl.Phys.Lett., 77,4211, (2000).
[10] D. Romero, M. Schaer, L. Zuppiroli, B. Cesar, and B. Francois, "Effects of doping in polymer light‐emitting diodes." Applied physics letters, 67, 12, 1659-1661, (1995).
[11] F. Huang, A. MacDiarmid, and B. Hsieh, "An iodine-doped polymer light-emitting diode." Applied physics letters, 71, 17, 2415-2417, (1997).
[12] C. A. A. Yamamori, T. Fritz, K.Leo, Appl.Phys.Lett., 73,729, (1998).
[13] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes." Semiconductor science and technology, 20, 4, S35, (2005).
[14] C. Guillen and J. Herrero, "TCO/metal/TCO structures for energy and flexible electronics." Thin Solid Films, 520, 1, 1-17, (2011).
[15] D. A. Keller et al., "Oxygen concentration as a combinatorial parameter: The effect of continuous oxygen vacancy variation on SnO2 layer conductivity." Materials Chemistry and Physics, 208, 289-293, (2018).
[16] P. Nunes, E. Fortunato, P. Tonello, F. B. Fernandes, P. Vilarinho, and R. Martins, "Effect of different dopant elements on the properties of ZnO thin films." Vacuum, 64, 3-4, 281-285, (2002).
[17] P. F. Ndione et al., "Tuning the physical properties of amorphous In–Zn–Sn–O thin films using combinatorial sputtering." MRS Communications, 6, 4, 360-366, (2016).
[18] C. Suh, C. Gorrie, J. Perkins, P. Graf, and W. Jones, "Strategy for the maximum extraction of information generated from combinatorial experimentation of Co-doped ZnO thin films." Acta materialia, 59, 2, 630-639, (2011).
[19] H. Çolak and H. İ. Mercan, "Influence of thallium doping on structural, electrical, and optical properties of ZnO nanorods for TCO applications." Journal of Materials Science: Materials in Electronics, 1-13, (2022).
[20] S. Muraleedharan and A. M. Ashok, "Efficacy of hydrothermally grown ASnO3 (A-Ca, Sr, Ba) transparent conducting oxide thin films." Physica B: Condensed Matter, 625, 413463, (2022).
[21] C. Esthan et al., "Transparent heterojunctions of Cu-based delafossites n-CuInO2/p-CuGaO2 by reactive evaporation method for transparent electronic applications." Vacuum, 197, 110808, (2022).
[22] R. Ramarajan et al., "Boltzmann conductivity approach for charge transport in spray-deposited transparent Ta-doped SnO2 thin films." Journal of Alloys and Compounds, 897, 163159, (2022).
[23] F.-H. Wang, M.-S. Chen, Y.-L. Jiang, H.-W. Liu, and T.-K. Kang, "Fabrication and characterization of sputtered Mg and F co-doped ZnO thin films with different substrate temperature for silicon thin-film solar cell applications." Journal of Alloys and Compounds, 897, 163174, (2022).
[24] V. Sharma, R. Vyas, P. Bazylewski, G. Chang, K. Asokan, and K. Sachdev, "Probing the highly transparent and conducting SnO x/Au/SnO x structure for futuristic TCO applications." RSC Advances, 6, 35, 29135-29141, (2016).
[25] T.-F. Chung et al., "Investigation of nanotwins in the bimodal-structured Fe22Co22Ni20Cr22Mn14 alloy subjected to high-strain-rate deformation at cryogenic temperatures." Materials Characterization, 170, 110667, (2020).
[26] Y. Qiu, S. Thomas, M. A. Gibson, H. L. Fraser, and N. Birbilis, "Corrosion of high entropy alloys." npj Materials degradation, 1, 1, 1-18, (2017).
[27] M.-H. Tsai and J.-W. Yeh, "High-entropy alloys: a critical review." Materials Research Letters, 2, 3, 107-123, (2014).
[28] G. Laplanche et al., "Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy." Journal of Alloys and Compounds, 746, 244-255, (2018).
[29] C. Oses, C. Toher, and S. Curtarolo, "High-entropy ceramics." Nature Reviews Materials, 1-15, (2020).
[30] H.-J. Qiu et al., "Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction." ACS Materials Letters, 1, 5, 526-533, (2019).
[31] X. Cui, B. Zhang, C. Zeng, and S. Guo, "Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction." MRS Communications, 8, 3, 1230-1235, (2018).
[32] R. Q. Yao et al., "Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction." Advanced Functional Materials, 31, 10, 2009613, (2021).
[33] J. Huang, P. Wang, P. Li, H. Yin, and D. Wang, "Regulating electrolytic Fe0. 5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution." Journal of Materials Science & Technology, 93, 110-118, (2021).
[34] Z. Jin et al., "Nanoporous Al‐Ni‐Co‐Ir‐Mo high‐entropy alloy for record‐high water splitting activity in acidic environments." Small, 15, 47, 1904180, (2019).
[35] J. Tang, J. Xu, Z. Ye, X. Li, and J. Luo, "Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction." Journal of Materials Science & Technology, 79, 171-177, (2021).
[36] M. W. Glasscott et al., "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis." Nature communications, 10, 1, 1-8, (2019).
[37] H. Li et al., "A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts." Chemical Communications, 57, 21, 2637-2640, (2021).
[38] H. Wang, R. Wei, X. Li, X. Ma, X. Hao, and G. Guan, "Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction." Journal of Materials Science & Technology, 68, 191-198, (2021).
[39] K. Huang et al., "Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst." Journal of Materials Chemistry A, 8, 24, 11938-11947, (2020).
[40] Z. Lv, X. Liu, B. Jia, H. Wang, Y. Wu, and Z. Lu, "Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions." Scientific reports, 6, 1, 1-11, (2016).
[41] Z. Jin et al., "Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide As highly stable electrocatalyst in Zn–Air batteries." ACS Materials Letters, 2, 12, 1698-1706, (2020).
[42] A. Hodge, Y. Wang, and T. Barbee Jr, "Large-scale production of nano-twinned, ultrafine-grained copper." Materials Science and Engineering: A, 429, 1-2, 272-276, (2006).
[43] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, "Metal nanowire networks: the next generation of transparent conductors." Advanced materials, 26, 39, 6670-6687, (2014).
[44] V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, and I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities." Surface and coatings technology, 122, 2-3, 290-293, (1999).
[45] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors." Science and Technology of Advanced Materials, (2010).
[46] M. Tahir et al., "High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential." ACS Energy Letters, 2, 9, 2177-2182, (2017).
[47] S. Seki, Y. Sawada, and T. Nishide, "Indium–tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride." Thin Solid Films, 388, 1-2, 22-26, (2001).
[48] D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts." Acta materialia, 122, 448-511, (2017).
[49] Y. Jien-Wei, "Recent progress in high entropy alloys." Ann. Chim. Sci. Mat, 31, 6, 633-648, (2006).
[50] Y. Xin et al., "High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities." Acs Catalysis, 10, 19, 11280-11306, (2020).
[51] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H. M. Chen, "Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives." Chemical Society Reviews, 46, 2, 337-365, (2017).
[52] Q. Ma et al., "Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts." Journal of Alloys and Compounds, 820, 153438, (2020).
[53] L. J. S. W. Kohn, Phys. Rev., 140, A1133–A1138, (1965).
[54] T. O. a. H. Kino, Phys. Rev. B, 72, 045121, (2005).
[55] J. M. Soler et al., "The SIESTA method for ab initio order-N materials simulation." Journal of Physics: Condensed Matter, 14, 11, 2745, (2002).
[56] P. E. Blochl, Phys. Rev. B, 41, R5414 (1990).
[57] S. S. Datta, Microst, 28, 253-278, (2000).
[58] J. Schmidhuber, "Deep learning in neural networks: An overview." Neural networks, 61, 85-117, (2015).
[59] T. Yamashita and P. Hayes, "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials." Applied surface science, 254, 8, 2441-2449, (2008).
[60] R. C. Pawar, Y. Pyo, S. H. Ahn, and C. S. Lee, "Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride." Applied Catalysis B: Environmental, 176, 654-666, (2015).
[61] L. Ma, S.-S. Lyu, Y. Dai, X.-Y. Pei, D.-C. Mo, and Y.-X. Fu, "Lithium storage properties of NiO/reduced graphene oxide composites derived from different oxidation degrees of graphite oxide." Journal of Alloys and Compounds, 810, 151954, (2019).
[62] A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, and N. S. McIntyre, "New interpretations of XPS spectra of nickel metal and oxides." Surface Science, 600, 9, 1771-1779, (2006).
[63] P. W. Menezes, A. Indra, V. Gutkin, and M. Driess, "Boosting electrochemical water oxidation through replacement of O h Co sites in cobalt oxide spinel with manganese." Chemical Communications, 53, 57, 8018-8021, (2017).
[64] R. Ding, L. Qi, M. Jia, and H. Wang, "Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation." Nanoscale, 6, 3, 1369-1376, (2014).
[65] G. Allen, S. Harris, J. Jutson, and J. Dyke, "A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy." Applied surface science, 37, 1, 111-134, (1989).
[66] J. Słoczyński, J. Janas, T. Machej, J. Rynkowski, and J. Stoch, "Catalytic activity of chromium spinels in SCR of NO with NH3." Applied Catalysis B: Environmental, 24, 1, 45-60, (2000).
[67] P. M. Sherwood, "Introduction to Studies of Aluminum and its Compounds by XPS." Surface Science Spectra, 5, 1, 1-3, (1998).
[68] H.-J. Qiu et al., "Platinum cluster/nanoparticle on CoO nanosheets with coupled atomic structure and high electrocatalytic durability." ACS Applied Energy Materials, 1, 5, 1840-1845, (2018).
[69] L.-K. Wu et al., "A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction." Journal of Materials Chemistry A, 5, 21, 10669-10677, (2017).
[70] O. N. Shebanova and P. Lazor, "Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum." Journal of Solid State Chemistry, 174, 2, 424-430, (2003).
[71] Y. Wang et al., "Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor." Nano Energy, 81, 105606, (2021).
[72] X. Bo et al., "Capturing the active sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction." Energy & Environmental Science, 13, 11, 4225-4237, (2020).
[73] T. X. Nguyen, Y. H. Su, C. C. Lin, and J. M. Ting, "Self‐Reconstruction of Sulfate‐Containing High Entropy Sulfide for Exceptionally High‐Performance Oxygen Evolution Reaction Electrocatalyst." Advanced Functional Materials, 31, 48, 2106229, (2021).
[74] G. Fang et al., "Multi-component nanoporous alloy/(oxy) hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries." Applied Catalysis B: Environmental, 268, 118431, (2020).
[75] Z. Ding et al., "High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst." Advanced Sustainable Systems, 4, 5, 1900105, (2020).