簡易檢索 / 詳目顯示

研究生: 林祖樑
Lin, Zu-Liang
論文名稱: 可修復系統非週期性預防維護策略之研究
A Study on Non-Periodic Preventive Maintenance Policies for Deteriorating Repairable Systems
指導教授: 黃宇翔
Huang, Yeu-Shiang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 83
中文關鍵詞: 貝氏非齊次卜瓦松過程預防維護可修復系統可靠度
外文關鍵詞: Bayesian, non-homogeneous Poisson process, preventive maintenance, repairable system, reliability
相關次數: 點閱:145下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複雜系統經常隨著時間而產生退化(deterioration)現象,退化的結果可能引起系統失效造成重大損失。因此,實施預防維護(preventive maintenance, PM)能減緩系統老化的程度並改善系統可靠度。何時施行以及如何進行預防維護等決策問題通常依據此系統的實際年齡來決定。然而,當系統退化程度與某些物理性變數(例如:金屬材料磨損程度或油品潤滑度)或系統性能量測變數(例如:系統失效頻率或所生產產品之不良率)有高度相關時,對系統進行狀態預防維護策略(condition-based PM policy)似乎比採取年齡相關預防維護策略(age-dependent PM policy)更適合。本研究針對可修復系統,假設系統失效服從冪次型強度函數(power law intensity)之非齊次卜瓦松過程(non-homogeneous Poisson process, NHPP),考慮不完美維護(imperfect PM)以及最小維修(minimal repair)的情況下,分別對上述二種應用最廣泛的預防維護策略推導單位時間期望總成本最小化之最適預防維護策略(optimal PM strategy)。然而,當失效模型的參數在不確知的情況下,模型的推導與相關分析將難以進行。我們整合專家們過去的理論與實務經驗以及系統失效資料,建構年齡相關預防維護策略之貝氏決策分析(Bayesian decision analysis)來處理這類的難題。最後透過實例來說明本研究所提出之最適預防維護模型的實際應用,並進行模型相關參數之敏感度分析與其最適預防維護策略之探討。

    Since a complex system usually deteriorates with age, and such deterioration may cause malfunctions and result in severe damage and losses, preventive maintenance (PM) is often carried out to keep the system functioning in a good state. The decision of when and how to perform a PM activity is commonly based on system age. However, when the deterioration is highly correlated with some physical (e.g., material wear or lubricant degradation) or system performance variables, such as quality of produced items or number of system breakdowns, a condition-based PM policy seems more appropriate than an age-dependent one. In this study, the deterioration of the system is modeled by a non-homogeneous Poisson process with a power law failure intensity, and a widely used age reduction model is applied to describe the restoration degree of imperfect PM activities. We derive the optimal non-periodic PM schedules which minimize the expected total cost per unit time for two popular and highly attractive PM policies in the literature: the age-dependent and the condition-based PM policies. However, since the determination of such the optimal PM schedules may involve numerous uncertainties which typically make the analyses difficult to perform because of the scarcity of data, a Bayesian decision model, which utilizes all available information effectively, is also proposed in the age-dependent PM context to deal with such difficulties. Numerical examples are given to illustrate the importance and the effectiveness of the proposed models. Sensitivity analyses and discussion on the optimal PM strategies for the proposed models are also presented.

    Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 Background and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Scope and Importance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 System Deterioration Process. . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.2 Maintenance Policies. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 8 2.2.1 Periodic PM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Age-dependent PM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Condition-based PM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Bayesian Decision Analysis for Repairable Systems . . . . . . . . . . 14 3 Non-Periodic Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . .17 3.1 Assumptions and Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 PM Activities and Maintenance Costs . . . . . . . . . . . . . . . . . . . . .21 4 Age-Dependent PM Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 4.1 Optimization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Bayesian Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.2.1 Prior and Posterior Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2 Natural Conjugate Prior Distribution . . . . . . . . . . . . . . . . . . . . . 32 5 Condition-Based PM Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1 System Reliability as the Condition Variable . . . . . . . . . . . . . . . . 37 5.2 Model Formulations and Analyses. . . . . . . . . . . . . . . . . . . . . . . .38 5.2.1 Model 1 (optimum Nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.2 Model 2 (optimum Nm and r(Nm)) . . . . . . . . . . . . . . . . . . . . . . 43 5.2.3 Model 3 (optimum Nm and ri, i = 1, 2, ..., rNm). . . . . . . . . . . . . 46 6 Illustrative Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 6.1 Age-dependent PM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Condition-based PM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.1 Air Conditioner Failure Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    Akturk M. S., S. Gurel. 2007. Machining conditions-based preventive maintenance. International Journal of Production Research 45(8) 1725-1743.
    Ascher, H. E. 1968. Evaluation of repairable system reliability using the “bad-as-old” concept. IEEE Transactions on Reliability R-17(2) 103-110.
    Ascher, H., H. Feingold. 1984. Repairable Systems Reliability: Modeling, Inference, Misconceptions and Their Causes. Marcel Dekker, New York.
    Ascher, H. E., K. A. H. Kobbacy. 1995. Modelling preventive maintenance for deteriorating repairable systems. Journal of Mathematics Applied in Business and Industry 6(1) 85-99.
    Bain, L. J., M. Engelhardt. 1980. Inferences on the parameters and current system reliability for a time truncated Weibull process. Technometrics 22(3) 421-426.
    Bain, L. J., M. Engelhardt. 1991. Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods, 2nd ed. Marcel Dekker, New York.
    Barlow R., L. Hunter. 1960. Optimum preventive maintenance policies. Operations Research 8(1) 90-100.
    Bassin, W. M. 1973. A Bayesian optimal overhaul interval model for the Weibull restoration process case. Journal of the American Statistical Association 68(343) 575-578.
    Bérenguer, C., A. Grall, L. Dieulle, M. Roussignol. 2003. Maintenance policy for a continuously monitored deteriorating system. Probability in the Engineering and Informational Sciences 17(2) 235-250.
    Block, H. W., W. S. Borges, T. H. Savits. 1988. A general age replacement model with minimal repair. Naval Research Logistics 35(5) 365-372.
    Brown, M., F. Proschan. 1983. Imperfect repair. Journal of Applied Probability 20(4) 851-859.
    Castanier, B., A. Grall, C. Bérenguer. 2005. A condition-based maintenance policy with non-periodic inspections for a two-unit series system. Reliability Engineering and System Safety 87(1) 109-120.
    Cha, J. H., J. Mi. 2007. Optimal burn-in procedure for periodically inspected systems. Naval Research Logistics 54(7) 720-731.
    Chun, Y. H. 1992. Optimal number of periodic preventive maintenance operations under warranty. Reliability Engineering and System Safety 37(3) 223-225.
    Crow, L. H. 1982. Confidence interval procedures for the Weibull process with applications to reliability growth. Technometrics 24(1) 67-72.
    Dagpunar, J. S., N. Jack. 1994. Preventive maintenance strategy for equipment under warranty. Microelectronics and Reliability 34(6) 1089-1093.
    Dayanik, S., Ü. Gürler. 2002. An adaptive {Bayesian} replacement policy with minimal repair. Operations Research 50(3) 552-558.
    Dieulle, L., C. Bérenguer, A. Grall, M. Roussignol. 2003. Sequential condition-based maintenance scheduling for a deteriorating system. European Journal of Operational Research 150(2) 451-461.
    Dimitrov, B., S. Chukova, Z. Khalil. 2004. Warranty costs: An age-dependent failure/repair model. Naval Research Logistics 51(7) 959-976.
    Ebeling, C. E. 2005. An Introduction to Reliability and Maintainability Engineering. Waveland Press, Illinois.
    El-Ferik, S., M. Ben-Daya. 2006. Age-based hybrid model for imperfect preventive maintenance. IIE Transactions 38(4) 365-375.
    Gåsemyr, J., B. Natvig. 2001. Bayesian inference based on partial monitoring of components with applications to preventive system maintenance. Naval Research Logistics 48(7) 551-577.
    Gertsbakh I. 2000. Reliability Theory with Applications to Preventive Maintenance. Springer-Verlag, Berlin.
    Giorgio, M., M. Guida, G. Pulcini. 2007. A wear model for assessing the reliability of cylinder liners in marine diesel engines. IEEE Transactions on Reliability 56(1) 158-166.
    Grall, A., C. Bérenguer, L. Dieulle. 2002a. A condition-based maintenance policy for stochastically deteriorating systems. Reliability Engineering and System Safety 76(2) 167-180.
    Grall, A., L. Dieulle, C. Bérenguer, M. Roussignol. 2002b. Continuous-time predictive-maintenance scheduling for a deteriorating system. Transactions on Reliability 51(2) 141-150.
    Guida, M., R. Calabria, G. Pulcini. 1989. Bayes inference for a non-homogeneous Poisson process with power intensity law. IEEE Transactions on Reliability 38(5) 603-609.
    Huang, Y.-S. 2004. A structural design of decision support systems for deteriorating repairable systems. Computers & Operations Research 31(7) 1135-1145.
    Huang, Y.-S., V. M. Bier. 1998. A natural conjugate prior for the non-homogeneous Poisson process with a power law intensity function. Communications in Statistics - Simulation and Computation 27(2) 525-551.
    Huang, Y.-S., C.-C. Hung, C.-C. Fang. 2008. Bayesian enhanced decision making for deteriorating repairable systems with preventive maintenance. Naval Research Logistics 55(2) 105-115.
    Jack, N., J. S. Dagpunar. 1994. An optimal imperfect maintenance policy over a warranty period. Microelectronics and Reliability 34(3) 529-534.
    Jayabalan, V., D. Chaudhuri. 1992. Cost optimization of maintenance scheduling for a system with assured reliability. IEEE Transactions on Reliability 41(1) 21-25.
    Kuo, L., T. Y. Yang. 1996. Bayesian computation for nonhomogeneous Poisson processes in software reliability. Journal of the American Statistical Association 91(434) 763-773.
    Lee, L., S. K. Lee. 1978. Some Results on Inference for the Weibull Process. Technometrics 20(1) 41-45.
    Li, J., J. Jin, J. Shi. 2008. Causation-based T2 decomposition for multivariate process monitoring and diagnosis. Journal of Quality Technology 40(1) 46-58.
    Li, H., M. Shaked. 2003. Imperfect repair models with preventive maintenance. Journal of Applied Probability 40(4) 1043-1059.
    Li, Y., F. Tsung. 2009. False discovery rate-adjusted charting schemes for multistage process monitoring and fault identification. Technometrics 51(2) 186--205.
    Liao, H., E. A. Elsayed, L.-Y. Chan. 2006. Maintenance of continuously monitored degrading systems. European Journal of Operational Research 175(2) 821-835.
    Lie, C. H., Y. H. Chun. 1986. An algorithm for preventive maintenance policy. IEEE Transactions on Reliability 35(1) 71-75.
    Lin, Z.-L., Y.-S. Huang. 2010. Nonperiodic preventive maintenance for repairable systems. Naval Research Logistics 57(7) 615-625.
    Lin, D., M. J. Zuo, R. C. M. Yam. 2000. General sequential imperfect preventive mantenance models. International Journal of Reliability, Quality and Safety Engineering 7(3) 253-266.
    Lin, D., M. J. Zuo, R. C. M. Yam. 2001. Sequential imperfect preventive maintenance models with two categories of failure modes. Naval Research Logistics 48(2) 172-183.
    Liu, X. G., V. Makis, A. K. S. Jardine. 1995. A replacement model with overhauls and repairs. Naval Research Logistics 42(7) 1063-80.
    Lu, C. J., W. Q. Meeker. 1993. Using degradation measures to estimate a time-to-failure distribution. Technometrics 35(2) 167-174.
    Martorell, S., A. Sanchez, V. Serradell. 1999. Age-dependent reliability model considering effects of maintenance and working conditions. Reliability Engineering and System Safety 64(1) 19-31.
    Mazzuchi, T. A., R. Soyer. 1996. A Bayesian perspective on some replacement strategies. Reliability Engineering and System Safety 51(3) 295-303.
    McCall, J. J. 1965. Maintenance policies for stochastically failing equipment: A survey. Management Science 11(5) 493-524.
    McKone, K. E., E. N. Weiss. 2002. Guidelines for implementing predictive maintenance. Production and Operations Management 11(2) 109-124.
    Meeker, W. Q., L. A. Escobar. 1998. Statistical Methods for Reliability Data Analysis. Wiley, New York.
    Murthy, D. N. P., D. G. Nguyen. 1981. Optimal age-policy with imperfect preventive maintenance. IEEE Transactions on Reliability R-30(1) 80-81.
    Nair, V., M. Hansen, J. Shi. 2000. Statistics in advanced manufacturing. Journal of the American Statistical Association 95(451) 1002-1005.
    Nakagawa, T. 1979a. Optimum policies when preventive maintenance is imperfect. IEEE Transactions on Reliability R-28(4) 331-332.
    Nakagawa, T. 1979b. Imperfect preventive-maintenance. IEEE Transactions on Reliability R-28(5) 402--402.
    Nakagawa, T. 1986. Periodic and sequential preventive maintenance policies. Journal of Applied Probability 23(2) 536-542.
    Nakagawa, T. 1988. Sequential imperfect preventive maintenance policies. IEEE Transactions on Reliability 37(3) 295-298.
    Nakagawa, T. 2005. Maintenance Theory of Reliability. Springer-Verlag, London.
    Nakagawa, T. 2008. Advanced Reliability Models and Maintenance Policies. Springer-Verlag, London.
    Nakagawa T., S. Mizutani. 2009. A summary of maintenance policies for finite interval. Reliability Engineering and System Safety 94(1) 89-96.
    Nguyen, D. G., D. N. P. Murthy. 1981a. Optimal preventive maintenance policies for repairable systems. Operations Research 29(6) 1181-1194.
    Nguyen, D. G., D. N. P. Murthy. 1981b. Optimal maintenance policy with imperfect preventive maintenance. IEEE Transactions on Reliability R-30(5) 496-497.
    Park, W. J., E. H. Pickering. 1997. Statistical analysis of a power-law model for repair data. IEEE Transactions on Reliability 46(1) 27-30.
    Percy, D. F. 2002. Bayesian enhanced strategic decision making for reliability. European Journal of Operational Research 139(1) 133-145.
    Pham, H., H. Wang. 1996. Imperfect maintenance. European Journal of Operational Research 94(3) 425-438.
    Proschan, F. 1963. Theoretical explanation of observed decreasing failure rate. Technometrics 5(3) 375-384.
    Pulcini, G. 2001. A bounded intensity process for the reliability of repairable equipment. Journal of Quality Technology 33(4) 480-492.
    Pulcini, G. 2008. Repairable system analysis for bounded intensity functions and various operating conditions. Journal of Quality Technology 40(1) 78-96.
    Rao, B. K. N. 1996. Handbook of Condition Monitoring. Elsevier Science, Amsterdam.
    Rausand, M, A. Høyland. 2004. System Reliability Theory: Models, statistical methods, and applications, 2nd ed. Wiley, New York.
    Rigdon, S. E., A. P. Basu. 2000. Statistical Methods for the Reliability of Repairable Systems. Wiley, New York.
    Saranga, H., J. Knezevic. 2001. Reliability prediction for condition-based maintained systems. Reliability Engineering and System Safety 71(2) 219-224.
    Shaked, M., J. G. Shanthikumar. 1986. Multivariate imperfect repair. Operations Research 34(3) 437-448.
    Sheu, S.-H., C.-C. Chang. 2009. An extended periodic imperfect preventive maintenance model with age-dependent failure type. IEEE Transactions on Reliability 58(2) 397-405.
    Sheu, S.-H., R.-H. Yeh, Y.-B. Lin, M.-G. Juang. 2001. A Bayesian approach to an adaptive preventive maintenance model. Reliability Engineering and System Safety 71(1) 33-44.
    Shi, J., S. Zhou. 2009. Quality control and improvement for multistage systems: A survey. IIE Transactions 41(9) 744-753.
    Stadje, W., D. Zuckerman. 1996. A generalized maintenance model for stocastically deteriorating equipment. European Journal of Operational Research 89(2) 285-301.
    Thompson, W. A., Jr. 1981. On the foundations of reliability. Technometrics 23(1) 1-13.
    Valdez-Flores, C., R. M. Feldman. 1989. A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Naval Research Logistics 36(4) 419-446.
    Wang, W. 2000. A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance. International Journal of Production Research 38(6) 1425-1436.
    Wang, H. 2002. A survey of maintenance policies of deteriorating systems. European Journal of Operational Research 139(3) 469-489.
    Wang, L., J. Chu, W. Mao. 2009. A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research 194(1) 184-205.
    Wang, H., H. Pham. 1996. Optimal age-dependent preventive maintenance policies with imperfect maintenance. International Journal of Reliability, Quality and Safety Engineering 3(2) 119-135.
    Wang, H., H. Pham. 1999. Some maintenance models and availability with imperfect maintenance in production systems. Annals of Operations Research 91 305-318.
    Wang, H., H. Pham. 2006. Reliability and Optimal Maintenance. Sprinper-Verlag, London.
    Wu, S., D. Clements-Croome. 2005. Preventive maintenance models with random maintenance quality. Reliability Engineering and System Safety 90(1) 99-105.
    Yeh, R.-H., W.-L. Chang. 2007. Optimal threshold value of failure-rate for leased products with preventive maintenance actions. Mathematical and Computer Modelling 46(5-6) 730-737.
    Zhang, F. and A. K. S. Jardine. 1998. Optimal maintenance models with minimal repair, periodic overhaul and complete renewal. IIE Transactions 30(12) 1109-1119.
    Zhao, Y. X. 2003. On preventive maintenance policy of a critical reliability level for system subject to degradation. Reliability Engineering and System Safety 79(3) 301-308.
    Zhou, X., L. Xi, J. Lee. 2007. Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliability Engineering and System Safety 92(4) 530-534.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE