簡易檢索 / 詳目顯示

研究生: 陳祥恩
Chen, Shiang-En
論文名稱: 醫院廢水中困難梭狀桿菌的孢子:發生率、危險因子及發展 一新型檢測方法
Clostridioides difficile spores in hospital wastewater: incidence, risk factors, and development of a novel detection method
指導教授: 洪元斌
Hung, Yuan-Pin
蔡智瑄
Tsai, Chih-Hsuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 80
中文關鍵詞: 困難梭狀芽孢桿菌感染困難梭狀芽孢桿菌孢子融合瘤單株抗體重組桿狀病毒
外文關鍵詞: C. difficile infection (CDI), C. difficile spore, hybridoma, monoclonal antibody, recombinant baculovirus
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫院廢水中含有許多抗藥性病原體,尤其是困難梭狀芽孢桿菌 (Clostridioides difficile),這是一種革蘭氏陽性、專性厭氧、會形成孢子的細菌,可造成嚴重的抗生 素相關性腹瀉。C. difficile 孢子對於酒精和漂白劑,以及萬古黴素等用於治療 C. difficile infection (CDI) 的抗生素有耐受性,是造成 CDI 復發和醫院或社區環境中擴散的主要 原因。因此,檢測醫院廢水中和病患糞便中的 C. difficile 孢子對病患健康和環境消毒 至關重要。我們在每週監測中注意到醫院廢水中孢子的數量具有波動性且與醫院內的 抗生素使用量和溫度有相關性。我們也發現另一種院內感染病源體,耐萬古黴素腸球 菌 (VRE) 經常出現在 CDI 患者的糞便中。另一方面,現行的孢子檢測方法至少需要 七天的培養才具有足夠被監測到的菌量,而在免疫檢測方面,目前市面上無法買到成 對用於檢測孢子的抗體。為了生產檢測孢子單株抗體 (mAbs),我們用純化的孢子免 疫小鼠。另一方面,我們建構重組桿狀病毒 SRC 和 SBA 來分別表現孢子外壁蛋白質 CdeC 和 CotA。我們發現在 ELISA 中,免疫孢子的小鼠對於孢子和表現孢子外壁蛋 白質的細胞裂解物比未免疫組產生更高的抗體反應,我們因此犧牲免疫孢子的小鼠取 出脾臟細胞。將脾臟細胞與骨髓瘤細胞融合後,產出了能夠表達抗體的 384 株融合瘤 細胞。使用我們製作的重組桿狀病毒 SRC 和 SBA 感染 Sf21 細胞的裂解物和孢子來 檢驗融合瘤的抗原性,發現 20 株融合瘤中有兩個選殖株有較高且穩定的讀值。這些 mAbs 將被進一步用來開發一套能更快速、準確地檢測病人糞便和醫院廢水中的孢子 檢測系統。

    C. difficile infection (CDI) results in symptoms ranging from mild diarrhea to severe pseudomembranous colitis and toxic megacolon. The spores can persist in the environment for several months and cannot be eliminated by alcohol, bleach, or antibiotics. Therefore, detecting spores is crucial for patient health and public health. Fluctuations in spore amounts in hospital wastewater were noted during our weekly surveillance. Changes in spore amounts in hospital wastewater are correlated with the antibiotics consumption and room temperature. The current method for detecting spores takes seven days, and for detection via immunoassay, there is no specific antibody pair against spores available on the market. Thus, we aim to produce monoclonal antibodies (mAbs) that can recognize the spores for developing a spore detection platform. We immunized mice with purified spores and constructed recombinant baculoviruses SRC and SBA to express the spore exosporium proteins CdeC and CotA, respectively. We found that in ELISA, mice immunized with spores developed higher antibody responses to spores and cell lysates expressing exosporium proteins than unimmunized mice. We then sacrificed the immunized mice to generate hybridoma. After fusing mouse splenocytes with myeloma cells, we successfully produced 384 hybridoma clones and used spores or cells expressing exosporium proteins as antigens to initially screen out 20 hybridoma clones. Two of the selected clones showed higher and stable ELISA OD450 values. These mAbs will be further used to develop a system for more rapid and accurate detection of spores in patient feces and hospital wastewater.

    中文摘要 I 英文延伸摘要 II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 附錄目錄 XI 壹、背景介紹 1 一、困難梭狀芽孢桿菌Clostridioides difficile 1 二、耐萬古黴素腸球菌vancomycin-resistant Enterococcus (VRE) 3 三、C. difficile孢子 3 四、C. difficile孢子結構 5 五、昆蟲桿狀病毒 6 六、融合瘤細胞技術 7 實驗目的 9 貳、材料與方法 10 菌株 10 昆蟲細胞培養 10 C. difficile從廢水分離出的方法 10 從病患檢體中培養C. difficile和耐萬古黴素腸球菌 12 患者檢體中的C. difficile毒素分析 12 C. difficile孢子純化 13 孢子數量計算方法 14 C. difficile孢子外壁蛋白質 (CdeC和CotA) 基因片段擴增與純化 15 重組桿狀病毒建構 16 孢子外壁蛋白質 (CdeC和CotA) 純化 17 蛋白質濃縮 18 蛋白質含量測定 18 蛋白質電泳 19 西方墨點法 19 小鼠免疫試驗 20 小鼠採血實驗 20 小鼠血清酵素連結免疫吸附分析法 (ELISA) 20 融合瘤細胞生產 20 融合瘤細胞篩選 22 統計方法 23 參、實驗結果 24 一、監測成大醫院每週C. difficile孢子數量 (指標以週為單位統計) 24 二、醫院廢水中孢子數量與CDI病患人數、醫院內室溫、醫院內濕度、住院患者抗生素耗用量的相關性分析 (所有指標皆以月為單位來統計) 24 三、醫院廢水中孢子數量與頭孢菌素 (Cephalosporins)、盤尼西林類 (Penicillins)、碳青黴烯類 (Carbapenem)、氟喹諾酮類 (Fluoroquinolone) 抗生素定義每日劑量 (Defined daily dose, DDD) 的相關性分析 (所有指標皆以月總和來統計) 24 四、醫院廢水中孢子數量與第一代到第五代頭孢菌素抗生素定義每日劑量的相關性分析 (所有指標皆以月總和來統計) 25 五、醫院廢水中孢子數量與第一代頭孢菌素頭孢唑林 (Cefazolin) 和頭孢氨苄 (Cephalexin) 定義每日劑量的相關性分析 (所有指標皆以月總和來統計) 26 六、探討CDI患者糞便中C. difficile與耐萬古黴素腸球菌的共定植情況 26 七、對分離出的C. difficile進行所含有的毒素分析 26 八、建構表現重組蛋白CdeC和CotA的重組桿狀病毒 27 九、以鈷離子樹脂管柱進行重組蛋白CdeC和CotA的純化結果 28 十、以C. difficile孢子來免疫小鼠 28 十一、融合瘤細胞初步篩選 29 十二、融合瘤細胞二次篩選 30 肆、討論 31 伍、參考文獻 35 陸、表格 44 柒、圖示 50 捌、附錄 66

    Ahmed, M. O., & Baptiste, K. E. (2017). Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microbial Drug Resistance, 24(5), 590-606. https://doi.org/10.1089/mdr.2017.0147
    Akerlund, T., Persson, I., Unemo, M., Norén, T., Svenungsson, B., Wullt, M., & Burman, L. G. (2008). Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol, 46(4), 1530-1533. https://doi.org/10.1128/jcm.01964-07
    Aktories, K., Schwan, C., & Jank, T. (2017). Clostridium difficile Toxin Biology. Annu Rev Microbiol, 71, 281-307. https://doi.org/10.1146/annurev-micro-090816-093458
    Altmann, F., Staudacher, E., Wilson, I. B. H., & März, L. (1999). Insect cells as hosts for the expression of recombinant glycoproteins. In E. G. Berger, H. Clausen, & R. D. Cummings (Eds.), Glycotechnology (pp. 29-43). Springer US. https://doi.org/10.1007/978-1-4615-5257-4_3
    Anaissie, E. J., Penzak, S. R., & Dignani, M. C. (2002). The Hospital Water Supply as a Source of Nosocomial Infections: A Plea for Action. Archives of Internal Medicine, 162(13), 1483-1492. https://doi.org/10.1001/archinte.162.13.1483
    Awad, M. M., Johanesen, P. A., Carter, G. P., Rose, E., & Lyras, D. (2014). Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes, 5(5), 579-593. https://doi.org/10.4161/19490976.2014.969632
    Barbut, F., Mastrantonio, P., Delmée, M., Brazier, J., Kuijper, E., & Poxton, I. (2007). Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clinical Microbiology and Infection, 13(11), 1048-1057. https://doi.org/https://doi.org/10.1111/j.1469-0691.2007.01824.x
    Barra-Carrasco, J., Olguín-Araneda, V., Plaza-Garrido, Á., Miranda-Cárdenas, C., Cofré-Araneda, G., Pizarro-Guajardo, M., Sarker, M. R., & Paredes-Sabja, D. (2013). The Clostridium difficile Exosporium Cysteine (CdeC)-Rich Protein Is Required for Exosporium Morphogenesis and Coat Assembly. Journal of bacteriology, 195(17), 3863-3875. https://doi.org/doi:10.1128/jb.00369-13
    Bassères, E., Endres, B. T., Montes-Bravo, N., Pérez-Soto, N., Rashid, T., Lancaster, C., Begum, K., Alam, M. J., Paredes-Sabja, D., & Garey, K. W. (2021). Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores. Anaerobe, 69, 102352. https://doi.org/https://doi.org/10.1016/j.anaerobe.2021.102352
    Boivineau, J., Haffke, M., & Jaakola, V. P. (2020). Membrane Protein Expression in Insect Cells Using the Baculovirus Expression Vector System. Methods Mol Biol, 2127, 63-80. https://doi.org/10.1007/978-1-0716-0373-4_5
    Breathnach, A. S., Cubbon, M. D., Karunaharan, R. N., Pope, C. F., & Planche, T. D. (2012). Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. Journal of Hospital Infection, 82(1), 19-24. https://doi.org/https://doi.org/10.1016/j.jhin.2012.06.007
    Brooke, J. S. (2008). Pathogenic bacteria in sink exit drains. J Hosp Infect, 70(2), 198-199. https://doi.org/10.1016/j.jhin.2008.06.017
    Calderón-Romero, P., Castro-Córdova, P., Reyes-Ramírez, R., Milano-Céspedes, M., Guerrero-Araya, E., Pizarro-Guajardo, M., Olguín-Araneda, V., Gil, F., & Paredes-Sabja, D. (2018). Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathog, 14(8), e1007199. https://doi.org/10.1371/journal.ppat.1007199
    Calderón-Romero, P., Castro-Córdova, P., Reyes-Ramírez, R., Milano-Céspedes, M., Guerrero-Araya, E., Pizarro-Guajardo, M., Olguín-Araneda, V., Gil, F., & Paredes-Sabja, D. (2018). Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS pathogens, 14(8), e1007199. https://doi.org/10.1371/journal.ppat.1007199
    Chandrasekaran, R., & Lacy, D. B. (2017). The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev, 41(6), 723-750. https://doi.org/10.1093/femsre/fux048
    Chang, S.-C., Su, C.-H., Chou, W.-H., Hwang, K.-P., Chuang, Y.-C., Chou, M.-Y., Leu, H.-S., Wang, F.-D., Wang, J.-T., & Wang, L.-S. (2009). Epidemiology of nosocomial Clostridium difficile disease in Taiwan. Epidemiology Bulletin, 25(3), 163-177.
    Claro, T., Daniels, S., & Humphreys, H. (2014). Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is best? J Clin Microbiol, 52(9), 3426-3428. https://doi.org/10.1128/jcm.01011-14
    Clements, A. C., Magalhães, R. J., Tatem, A. J., Paterson, D. L., & Riley, T. V. (2010). Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis, 10(6), 395-404. https://doi.org/10.1016/s1473-3099(10)70080-3
    Coleman, W. H., Chen, D., Li, Y. Q., Cowan, A. E., & Setlow, P. (2007). How moist heat kills spores of Bacillus subtilis. J Bacteriol, 189(23), 8458-8466. https://doi.org/10.1128/jb.01242-07
    Díaz-González, F., Milano, M., Olguin-Araneda, V., Pizarro-Cerda, J., Castro-Córdova, P., Tzeng, S.-C., Maier, C. S., Sarker, M. R., & Paredes-Sabja, D. (2015). Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. Journal of Proteomics, 123, 1-13. https://doi.org/https://doi.org/10.1016/j.jprot.2015.03.035
    Drudy, D., Kyne, L., O'Mahony, R., & Fanning, S. (2007). gyrA mutations in fluoroquinolone-resistant Clostridium difficile PCR-027. Emerg Infect Dis, 13(3), 504-505. https://doi.org/10.3201/eid1303.060771
    Edwards, A. N., Karim, S. T., Pascual, R. A., Jowhar, L. M., Anderson, S. E., & McBride, S. M. (2016). Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells [Original Research]. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01698
    Farooq, P. D., Urrunaga, N. H., Tang, D. M., & von Rosenvinge, E. C. (2015). Pseudomembranous colitis. Dis Mon, 61(5), 181-206. https://doi.org/10.1016/j.disamonth.2015.01.006
    Fawley, W. N., Underwood, S., Freeman, J., Baines, S. D., Saxton, K., Stephenson, K., Owens, R. C., Jr., & Wilcox, M. H. (2007). Efficacy of hospital cleaning agents and germicides against epidemic Clostridium difficile strains. Infect Control Hosp Epidemiol, 28(8), 920-925. https://doi.org/10.1086/519201
    Felberbaum, R. S. (2015). The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J, 10(5), 702-714. https://doi.org/10.1002/biot.201400438
    Freier, L., Zacharias, N., Gemein, S., Gebel, J., Engelhart, S., Exner, M., & Mutters, N. T. (2023). Environmental Contamination and Persistence of Clostridioides difficile in Hospital Wastewater Systems. Applied and Environmental Microbiology, 89(5), e00014-00023. https://doi.org/doi:10.1128/aem.00014-23
    Fujitani, S., George, W. L., Morgan, M. A., Nichols, S., & Murthy, A. R. (2011). Implications for vancomycin-resistant Enterococcus colonization associated with Clostridium difficile infections. Am J Infect Control, 39(3), 188-193. https://doi.org/10.1016/j.ajic.2010.10.024
    Ganguly, S., & Wakchaure, R. (2016). Hybridoma technology: a brief review on its diagnostic and clinical significance. Pharmaceut Biol Eval, 3(6), 554-555.
    Gerding, D. N., Muto, C. A., & Owens, R. C., Jr. (2008). Measures to Control and Prevent Clostridium difficile Infection. Clinical Infectious Diseases, 46(Supplement_1), S43-S49. https://doi.org/10.1086/521861
    Gerhardt, P. (1989). Spore thermoresistance mechanisms. Regulation. of Procaryotic Development.
    Gilca, R., Hubert, B., Fortin, E., Gaulin, C., & Dionne, M. (2010). Epidemiological patterns and hospital characteristics associated with increased incidence of Clostridium difficile infection in Quebec, Canada, 1998-2006. Infect Control Hosp Epidemiol, 31(9), 939-947. https://doi.org/10.1086/655463
    Goodarzi, H., Albouyeh, M., Rad, M., Zali, M., & Aslan, M. (2012). Molecular typing of Clostridium difficile isolated from hospitalized patients by PCR ribotyping.
    Goorhuis, A., Bakker, D., Corver, J., Debast, S. B., Harmanus, C., Notermans, D. W., Bergwerff, A. A., Dekker, F. W., & Kuijper, E. J. (2008). Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis, 47(9), 1162-1170. https://doi.org/10.1086/592257
    Goorhuis, A., Bakker, D., Corver, J., Debast, S. B., Harmanus, C., Notermans, D. W., Bergwerff, A. A., Dekker, F. W., & Kuijper, E. J. (2008). Emergence of Clostridium difficile Infection Due to a New Hypervirulent Strain, Polymerase Chain Reaction Ribotype 078. Clinical Infectious Diseases, 47(9), 1162-1170. https://doi.org/10.1086/592257
    Goorhuis, A., Van der Kooi, T., Vaessen, N., Dekker, F. W., Van den Berg, R., Harmanus, C., van den Hof, S., Notermans, D. W., & Kuijper, E. J. (2007). Spread and Epidemiology of Clostridium difficile Polymerase Chain Reaction Ribotype 027/Toxinotype III in The Netherlands. Clinical Infectious Diseases, 45(6), 695-703. https://doi.org/10.1086/520984
    Guh, A. Y., Mu, Y., Winston, L. G., Johnston, H., Olson, D., Farley, M. M., Wilson, L. E., Holzbauer, S. M., Phipps, E. C., Dumyati, G. K., Beldavs, Z. G., Kainer, M. A., Karlsson, M., Gerding, D. N., & McDonald, L. C. (2020). Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. New England Journal of Medicine, 382(14), 1320-1330. https://doi.org/doi:10.1056/NEJMoa1910215
    Henriques, A. O., & Moran, C. P., Jr. (2007). Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol, 61, 555-588. https://doi.org/10.1146/annurev.micro.61.080706.093224
    Hong, K. B., Oh, H. S., Song, J. S., Lim, J.-h., Kang, D. K., Son, I. S., Park, J. D., Kim, E. C., Lee, H. J., & Choi, E. H. (2012). Investigation and Control of an Outbreak of Imipenem-resistant Acinetobacter baumannii Infection in a Pediatric Intensive Care Unit. The Pediatric Infectious Disease Journal, 31(7), 685-690. https://doi.org/10.1097/INF.0b013e318256f3e6
    Joshi, S., Shallal, A., & Zervos, M. (2021). Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect Dis Clin North Am, 35(4), 953-968. https://doi.org/10.1016/j.idc.2021.07.002
    Kampmeier, S., Kossow, A., Clausen, L. M., Knaack, D., Ertmer, C., Gottschalk, A., Freise, H., & Mellmann, A. (2018). Hospital acquired vancomycin resistant enterococci in surgical intensive care patients – a prospective longitudinal study. Antimicrobial Resistance & Infection Control, 7(1), 103. https://doi.org/10.1186/s13756-018-0394-1
    Kuijper, E. J., Coignard, B., & Tüll, P. (2006). Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect, 12 Suppl 6, 2-18. https://doi.org/10.1111/j.1469-0691.2006.01580.x
    Labbé, A.-C., Poirier, L., MacCannell, D., Louie, T., Savoie, M., Béliveau, C., Laverdière, M., & Pépin, J. (2008). Clostridium difficile Infections in a Canadian Tertiary Care Hospital before and during a Regional Epidemic Associated with the BI/NAP1/027 Strain. Antimicrobial Agents and Chemotherapy, 52(9), 3180-3187. https://doi.org/10.1128/aac.00146-08
    Landelle, C., Verachten, M., Legrand, P., Girou, E., Barbut, F., & Buisson, C. B. (2014). Contamination of Healthcare Workers' Hands with Clostridium difficile Spores after Caring for Patients with C. difficile Infection. Infection Control & Hospital Epidemiology, 35(1), 10-15. https://doi.org/10.1086/674396
    Lawley, T. D., Croucher, N. J., Yu, L., Clare, S., Sebaihia, M., Goulding, D., Pickard, D. J., Parkhill, J., Choudhary, J., & Dougan, G. (2009). Proteomic and Genomic Characterization of Highly Infectious Clostridium difficile 630 Spores. Journal of bacteriology, 191(17), 5377-5386. https://doi.org/doi:10.1128/jb.00597-09
    Lee, Y.-C., Wang, J.-T., Chen, A.-C., Sheng, W.-H., Chang, S.-C., & Chen, Y.-C. (2012). Changing incidence and clinical manifestations of Clostridium difficile-associated diarrhea detected by combination of glutamate dehydrogenase and toxin assay in Northern Taiwan. Journal of Microbiology, Immunology and Infection, 45(4), 287-295. https://doi.org/https://doi.org/10.1016/j.jmii.2011.12.001
    Lin, Y.-C., Huang, Y.-T., Tsai, P.-J., Lee, T.-F., Lee, N.-Y., Liao, C.-H., Lin, S.-Y., Ko, W.-C., & Hsueh, P.-R. (2011). Antimicrobial susceptibilities and molecular epidemiology of clinical isolates of Clostridium difficile in Taiwan. Antimicrobial Agents and Chemotherapy, 55(4), 1701-1705.
    Loo, V. G., Poirier, L., Miller, M. A., Oughton, M., Libman, M. D., Michaud, S., Bourgault, A.-M., Nguyen, T., Frenette, C., Kelly, M., Vibien, A., Brassard, P., Fenn, S., Dewar, K., Hudson, T. J., Horn, R., René, P., Monczak, Y., & Dascal, A. (2005). A Predominantly Clonal Multi-Institutional Outbreak of Clostridium difficile–Associated Diarrhea with High Morbidity and Mortality. New England Journal of Medicine, 353(23), 2442-2449. https://doi.org/doi:10.1056/NEJMoa051639
    Luckenbach, G.-A. (1988). Some Recent Aspect on Hybridoma Technology. In W. R. Mayr, Advances in Forensic Haemogenetics Berlin, Heidelberg.
    Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annu Rev Microbiol, 60, 561-588. https://doi.org/10.1146/annurev.micro.59.030804.121325
    Maroo, S., & Lamont, J. T. (2006). Recurrent <em>Clostridium Difficile</em>. Gastroenterology, 130(4), 1311-1316. https://doi.org/10.1053/j.gastro.2006.02.044
    McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Kazakova, S. V., Sambol, S. P., Johnson, S., & Gerding, D. N. (2005). An Epidemic, Toxin Gene&#x2013;Variant Strain of <i>Clostridium difficile</i>. New England Journal of Medicine, 353(23), 2433-2441. https://doi.org/doi:10.1056/NEJMoa051590
    Merlani, G. M., & Francioli, P. (2003). Established and emerging waterborne nosocomial infections. Current Opinion in Infectious Diseases, 16(4), 343-347. https://journals.lww.com/co-infectiousdiseases/fulltext/2003/08000/established_and_emerging_waterborne_nosocomial.6.aspx
    Merrigan, M., Venugopal, A., Mallozzi, M., Roxas, B., Viswanathan, V. K., Johnson, S., Gerding, D. N., & Vedantam, G. (2010). Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol, 192(19), 4904-4911. https://doi.org/10.1128/jb.00445-10
    Miller, B. A., Chen, L. F., Sexton, D. J., & Anderson, D. J. (2011). Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile Infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infect Control Hosp Epidemiol, 32(4), 387-390. https://doi.org/10.1086/659156
    Mitra, S., & Tomar, P. C. (2021). Hybridoma technology; advancements, clinical significance, and future aspects. J Genet Eng Biotechnol, 19(1), 159. https://doi.org/10.1186/s43141-021-00264-6
    Moore, J. H., Salahi, A., Honrado, C., Warburton, C., Warren, C. A., & Swami, N. S. (2020). Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection. Biosens Bioelectron, 166, 112440. https://doi.org/10.1016/j.bios.2020.112440
    Moraes, J. Z., Hamaguchi, B., Braggion, C., Speciale, E. R., Cesar, F. B. V., Soares, G., Osaki, J. H., Pereira, T. M., & Aguiar, R. B. (2021). Hybridoma technology: is it still useful? Curr Res Immunol, 2, 32-40. https://doi.org/10.1016/j.crimmu.2021.03.002
    Mounsey, A., Lacy Smith, K., Reddy, V. C., & Nickolich, S. (2020). Clostridioides difficile Infection: Update on Management. Am Fam Physician, 101(3), 168-175.
    Mylonakis, E., Ryan, E. T., & Calderwood, S. B. (2001). Clostridium difficile--Associated diarrhea: A review. Arch Intern Med, 161(4), 525-533. https://doi.org/10.1001/archinte.161.4.525
    Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3), 548-572.
    Paredes-Sabja, D., Shen, A., & Sorg, J. A. (2014). Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends in microbiology, 22(7), 406-416.
    Parray, H. A., Shukla, S., Samal, S., Shrivastava, T., Ahmed, S., Sharma, C., & Kumar, R. (2020). Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol, 85, 106639. https://doi.org/10.1016/j.intimp.2020.106639
    Poduval, R. D., Kamath, R. P., Corpuz, M., Norkus, E. P., & Pitchumoni, C. S. (2000). Clostridium difficile and vancomycin-resistant Enterococcus: the new nosocomial alliance. Am J Gastroenterol, 95(12), 3513-3515. https://doi.org/10.1111/j.1572-0241.2000.03291.x
    Popham, D. (2002). Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cellular and molecular life sciences CMLS, 59, 426-433.
    Popoff, M. R., Rubin, E. J., Gill, D. M., & Boquet, P. (1988). Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infection and Immunity, 56(9), 2299-2306. https://doi.org/doi:10.1128/iai.56.9.2299-2306.1988
    Rafey, A., Jahan, S., Farooq, U., Akhtar, F., Irshad, M., Nizamuddin, S., & Parveen, A. (2023). Antibiotics Associated With Clostridium difficile Infection. Cureus, 15(5), e39029. https://doi.org/10.7759/cureus.39029
    Riggs, M. M., Sethi, A. K., Zabarsky, T. F., Eckstein, E. C., Jump, R. L. P., & Donskey, C. J. (2007). Asymptomatic Carriers Are a Potential Source for Transmission of Epidemic and Nonepidemic Clostridium difficile Strains among Long-Term Care Facility Residents. Clinical Infectious Diseases, 45(8), 992-998. https://doi.org/10.1086/521854
    Romero-Rodríguez, A., Troncoso-Cotal, S., Guerrero-Araya, E., & Paredes-Sabja, D. (2020). The Clostridioides difficile Cysteine-Rich Exosporium Morphogenetic Protein, CdeC, Exhibits Self-Assembly Properties That Lead to Organized Inclusion Bodies in Escherichia coli. MSphere, 5(6), 10.1128/msphere.01065-01020. https://doi.org/doi:10.1128/msphere.01065-20
    Safdar, N., & Maki, D. G. (2002). The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med, 136(11), 834-844. https://doi.org/10.7326/0003-4819-136-11-200206040-00013
    Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101(3), 514-525. https://doi.org/10.1111/j.1365-2672.2005.02736.x
    Setlow, P. (2007). I will survive: DNA protection in bacterial spores. Trends in microbiology, 15(4), 172-180.
    Setlow, P. (2016). Spore resistance properties. The bacterial spore: from molecules to systems, 201-215.
    Shams, A. M., Rose, L. J., & Noble-Wang, J. A. (2020). Development of a rapid-viability PCR method for detection of Clostridioides difficile spores from environmental samples. Anaerobe, 61, 102077. https://doi.org/10.1016/j.anaerobe.2019.102077
    Sib, E., Voigt, A. M., Wilbring, G., Schreiber, C., Faerber, H. A., Skutlarek, D., Parcina, M., Mahn, R., Wolf, D., Brossart, P., Geiser, F., Engelhart, S., Exner, M., Bierbaum, G., & Schmithausen, R. M. (2019). Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. International Journal of Hygiene and Environmental Health, 222(4), 655-662. https://doi.org/https://doi.org/10.1016/j.ijheh.2019.03.006
    Song, J. H., & Kim, Y. S. (2019). Recurrent Clostridium difficile Infection: Risk Factors, Treatment, and Prevention. Gut Liver, 13(1), 16-24. https://doi.org/10.5009/gnl18071
    Stabler, R. A., Dawson, L. F., Phua, L. T. H., & Wren, B. W. (2008). Comparative analysis of BI/NAP1/027 hypervirulent strains reveals novel toxin B-encoding gene (tcdB) sequences. J Med Microbiol, 57(Pt 6), 771-775. https://doi.org/10.1099/jmm.0.47743-0
    Steiner, E., Dago, A. E., Young, D. I., Heap, J. T., Minton, N. P., Hoch, J. A., & Young, M. (2011). Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Molecular Microbiology, 80(3), 641-654. https://doi.org/https://doi.org/10.1111/j.1365-2958.2011.07608.x
    Swan, J. S., Deasy, E. C., Boyle, M. A., Russell, R. J., O'Donnell, M. J., & Coleman, D. C. (2016). Elimination of biofilm and microbial contamination reservoirs in hospital washbasin U-bends by automated cleaning and disinfection with electrochemically activated solutions. Journal of Hospital Infection, 94(2), 169-174. https://doi.org/https://doi.org/10.1016/j.jhin.2016.07.007
    Valiente, E., Cairns, M. D., & Wren, B. W. (2014). The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clinical Microbiology and Infection, 20(5), 396-404. https://doi.org/https://doi.org/10.1111/1469-0691.12619
    Wei, H. L., Kao, C. W., Wei, S. H., Tzen, J. T., & Chiou, C. S. (2011). Comparison of PCR ribotyping and multilocus variable-number tandem-repeat analysis (MLVA) for improved detection of Clostridium difficile. BMC microbiology, 11, 1-13.
    Zaroff, S., & Tan, G. (2019). Hybridoma technology: the preferred method for monoclonal antibody generation for in vivo applications. BioTechniques, 67(3), 90-92. https://doi.org/10.2144/btn-2019-0054

    無法下載圖示 校內:2029-08-26公開
    校外:2029-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE