簡易檢索 / 詳目顯示

研究生: 蔡乙銨
Tsai, I-An
論文名稱: 一種電旋轉微流體晶片的免標記免疫檢測法開發
An Electrorotation-based Microfluidic Chip Developed for Label-free Immunoassay
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 介電泳電旋轉免標記免疫檢測表面修飾快速診斷
外文關鍵詞: Dielectrophoresis, electro rotation, label-free immunoassay, surface modification, rapid diagnosis
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於診斷醫學近年的蓬勃發展,個人化居家醫療需求增加,然而傳統的免疫分析檢測法迄今面臨許多問題,例如檢測儀器笨重昂貴、操作過程複雜繁瑣、分析結果耗時長等。因此,如何快速檢測檢體中是否有欲偵測之抗體或抗原存在,來提升診斷的效率與投藥的正確性,希望藉由本研究成果提供一個新穎又方便、省時、低成本的免疫檢測平台是我們的致力研究的目標。本研究整合電動力學技術在單一微流體晶片,並搭配使用動態影像技術來高速捕捉顯微鏡下的畫面,藉由影像處理軟體來計算出微柱的精確轉速並製作旋轉頻譜,以提供實驗分析用檢測數據。本研究架構主要分為三大部分: (1) 檢測的微柱製程: 本研究運用微機電(MEMS)製程技術,在矽晶圓上設計微柱結構,並使其再懸浮以供應我們檢測使用。(2) 微柱表面上修飾Anti-Protein A行免標記免疫檢測: 當檢體中含有對應的抗原時(Protein A),此時會發生免疫反應並產生特異性吸附,造成微柱表面介電特性產生變化。(3) 三維電旋轉微流體晶片進行微柱表面電特性評估: 本研究所用之晶片利用四個微電極形成電旋轉檢測區,可以藉由分析電旋轉的旋轉頻譜來達到快速判斷微柱表面介電特性的變化,來判斷檢體中是否有欲偵測之抗體或抗原存在。 根據本實驗結果,不論是在微柱表面單一蛋白質-streptavidin的修飾或因為抗原抗體反應而發生特異性吸附上抗原-Protein A的情況,均會造成微柱表面介電特性產生變化,並使得特徵頻率之轉速增加。本研究利用觀察特徵頻率上轉速的變化來快速的進行免標記免疫檢測的方式,若能成功地應用在臨床診斷,相較於傳統免疫檢測方式,預計會縮短大量免疫檢測所需的花費,並大幅縮短檢測所需時間。

    In light of the vigorous development of medical diagnosis in recent years, personalized home medical needs are thereafter on the increase. Nevertheless, the traditional immunoassay detection method has so far encountered numerous issues, such as low portability and high price of the detection equipment, the complex operation process and the excessive time it takes to run the analysis, etc. Thus, this study aims to provide a novel, convenient, time-saving, and low-cost immunoassay platform to rapidly detect the presence of targeted antibodies or antigens among the specimen to achieve efficient and correct diagnoses. This study integrated the electrodynamics technology onto a single micro fluidic chip and employed the dynamic imaging technology to capture images under the microscope at high speeds. The adaption of the image processing software is to calculate the precise speed of micro-rods and generate the rotation spectrum for further analysis and discussion in our research. This research can be divided into three major sections: (1) Micro-rods fabrication: using the technique of manufacturing an execution system (MEMS) to fabricate the micro-rods microarray on silicon wafers, and to re-suspend micro-rods to support our experiment. (2) Micro-rods surface modification of Anti-Protein A for label-free immunoassay: as the specimen contains corresponding Protein A (antigen), it will result in antibody-antigen reaction and the specific adsorption and change the electric polarization of micro-rod surfaces. (3) Conducting assessment of rods’ surface electrical characteristics with spectrum of three-dimensional electro rotation: Four microelectrodes are utilized to form an electric rotation detection zone, and by analyzing the spectrum of electro rotation, rapid assessment of rods’ surface electrical characteristics can be achieved to further detect the presence of specific antibody or antigen in a specimen. Based on this thesis, both the surface modification of streptavidin (directly adsorption) or Protein A (antibody-antigen reaction) caused the change of electrical characteristics on rods’ surfaces, as well as increasing the speeds of the characteristic frequency. This study analyzed the change of characteristic frequency of electro rotation spectrum to conduct rapid label-free immunoassay. If this approach can be used in the clinical diagnosis, it is expected to reduce time and cost of examination compared with the traditional immunoassay.

    Abstract I 中文摘要 II 誌謝 III Contents IV List of Figures VI Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Protein-Based Biomarkers 1 1.1.2 Current Methods of Immunoassay 4 1.2 Motivation & Purpose 9 1.3 Theory of Electrokinetics 11 1.3.1 Dielectrophoresis (DEP) 11 1.3.2 Electrorotation (ROT) 16 1.4 Research Configuration 20 Chapter 2 Materials and Methods 21 2.1 Biochip Fabrication by Photolithography 21 2.1.1 Photoresist Spin Coating 21 2.1.2 UV Exposure 21 2.1.3 Photoresist Development 22 2.1.4 Metal Layer Etching 22 2.1.5 Assembly of Three Dimensional Electrode Pattern 24 2.2 Fabrication of Rods 26 2.3 Experimental Equipment Setup 28 2.3.1 Function Generator 28 2.3.2 DC Power Supply 29 2.3.3 Microscope 29 2.3.4 Charge-Coupled Device (CCD) 30 2.3.5 Conductivity Meter 30 2.3.6 The Signal Pretreatment Module 31 2.4 Experimental Design 33 2.4.1 Sample Pretreatment 33 2.4.2 Experimental Architecture 35 2.4.3 Experimental Parameters 36 Chapter 3 Results and Discussion 37 3.1 Image Analysis 37 3.1.1 Calculation Method for Rods Rotation Speeds 37 3.1.2 Spectrum Computation 38 3.2 Change in Rods Rotation Speeds by Immobilization of Protein 39 3.2.1 Narrowing of Rods Size Scale and Its Effects 42 3.3 Applied for Label-free Immunoassay 46 Chapter 4 Conclusion and Prospects 52 References 53 Curriculum Vitae 56

    Abad, J. M., Vélez, M., Santamaría, C., Guisán, J. M., Matheus, P. R., Vázquez, L., Gazaryan, I., Gorton, L., Gibson, T., & Fernández, V. M. (2002). Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers. Journal of the American Chemical Society, 124(43), 12845-12853.
    Anderson, N. L. (2010). The Clinical Plasma Proteome: A Survey of Clinical Assays for Proteins in Plasma and Serum. Clinical Chemistry, 56(2), 177-185.
    Arnold, W. M., & Zimmermann, U. (1988). Electro-Rotation: Development of a Technique for Dielectric Measurements on Individual Cells and Particles. Journal of Electrostatics, 21(2), 151-191.
    Cargile, B. J., Bundy, J. L., Freeman, T. W., & Stephenson, J. L. (2004). Gel Based Isoelectric Focusing of Peptides and the Utility of Isoelectric Point in Protein Identification. Journal of proteome research, 3(1), 112-119.
    Chin, C. D., Laksanasopin, T., Cheung, Y. K., Steinmiller, D., Linder, V., Parsa, H., Wang, J., Moore, H., Rouse, R., Umviligihozo, G., Karita, E., Mwambarangwe, L., Braunstein, S. L., van de Wijgert, J., Sahabo, R., Justman, J. E., El-Sadr, W., & Sia, S. K. (2011). Microfluidics-Based Diagnostics of Infectious Diseases in the Developing World. Nat Med, 17(8), 1015-1019.
    Demircan, Y., Özgür, E., & Külah, H. (2013). Dielectrophoresis: Applications and Future Outlook in Point of Care. Electrophoresis, 34(7), 1008-1027.
    Engvall, E., & Perlmann, P. (1971). Enzyme-linked Immunosorbent Assay (ELISA) Quantitative Assay of Immunoglobulin G. Immunochemistry, 8(9), 871-874.
    Fuhr, G., Arnold, W. M., Hagedorn, R., Müller, T., Benecke, W., Wagner, B., & Zimmermann, U. (1992). Levitation, Holding, and Rotation of Cells within Traps Made by High-Frequency Fields. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1108(2), 215-223.
    Hölzel, R. (1990). Elektromagnetische Felder in der Umgebung Lebender Zellen. German: Berlin Verlag A. Spitz.
    Hermanson, G. T. (2013). Bioconjugate Techniques: Academic Press.
    Huang, Y., Holzel, R., Pethig, R., & Wang, X.-B. (1992). Differences in the AC Electrodynamics of Viable and Non-viable Yeast Cells Determined Through Combined Dielectrophoresis and Electrorotation Studies. Physics in Medicine and Biology, 37(7), 1499.
    Jeong, J.-T., Shin, H.-M., Kim, D., & Lee, K.-H. (2016). A Dielectrophoresis Microfluidic Device for Trapping Bioparticles at Low Voltage and Frequency. Journal of Biosystems Engineering, 41(1), 60-65.
    Jones, T. B. (2003). Basic Theory of Dielectrophoresis and Electrorotation. IEEE Engineering in Medicine and Biology Magazine, 22(6), 33-42.
    Jones, T. B., & Jones, T. B. (2005). Electromechanics of Particles: Cambridge University Press.
    Jones, T. B., & Washizu, M. (1996). Multipolar Dielectrophoretic and Electrorotation Theory. Journal of Electrostatics, 37(1), 121-134.
    Kern, W. (1990). The Evolution of Silicon Wafer Cleaning Technology. Journal of the Electrochemical Society, 137(6), 1887-1892.
    Mateo, C., Fernández-Lorente, G., Abian, O., Fernández-Lafuente, R., & Guisán, J. M. (2000). Multifunctional Epoxy Supports:  A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules, 1(4), 739-745.
    Morgan, H., & Green, N. (2003). AC Electrokinetics: Colloids and Nanoparticles. 2003. Hertfordshire, England: Research Studies Press LTD, 324(4), 49-63.
    Nadji, M., Tabei, S. Z., Castro, A., Chu, T. M., Murphy, G. P., Wang, M. C., & Morales, A. R. (1981). Prostatic-Specific Antigen: An Immunohistologic Marker for Prostatic Neoplasms. Cancer, 48(5), 1229-1232.
    Pohl, H. A. (1951). The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 22, 869-871.
    Qian, C., Huang, H., Chen, L., Li, X., Ge, Z., Chen, T., Yang, Z., & Sun, L. (2014). Dielectrophoresis for Bioparticle Manipulation. International journal of molecular sciences, 15(10), 18281-18309.
    Sam, S., Touahir, L., Salvador Andresa, J., Allongue, P., Chazalviel, J. N., Gouget-Laemmel, A. C., Henry de Villeneuve, C., Moraillon, A., Ozanam, F., Gabouze, N., & Djebbar, S. (2010). Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir, 26(2), 809-814.
    Sillero, A., & Ribeiro, J. M. (1989). Isoelectric Points of Proteins: Theoretical Determination. Analytical biochemistry, 179(2), 319-325.
    Spiro, S. G., & Silvestri, G. A. (2005). One Hundred Years of Lung Cancer. American journal of respiratory and critical care medicine, 172(5), 523-529.
    Thompson, J., Grunert, F., & Zimmermann, W. (1991). Carcinoembryonic Antigen Gene Family: Molecular Biology and Clinical Perspectives. Journal of Clinical Laboratory Analysis, 5(5), 344-366.
    Tothill, I. E. (2009). Biosensors for Cancer Markers Diagnosis. Seminars in Cell & Developmental Biology, 20(1), 55-62.
    Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350-4354.
    Washizu, M., & Jones, T. B. (1996). Generalized Multipolar Dielectrophoretic Force and Electrorotational Torque Calculation. Journal of Electrostatics, 38(3), 199-211.
    Wilkins, M. R., Appel, R. D., Williams, K. L., & Hochstrasser, D. F. (1997). Proteome Research.
    Wu, S., Wan, P., Li, J., Li, D., Zhu, Y., & He, F. (2006). Multi‐Modality of PI Distribution in Whole Proteome. Proteomics, 6(2), 449-455.

    無法下載圖示 校內:2022-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE