| 研究生: |
林虹均 Lin, Hung-Jiun |
|---|---|
| 論文名稱: |
表面修飾伴刀豆球蛋白之奈米粒子的製備與生醫應用 Preparation and biomedical application of nanoparticles with surface modification by concanavalin A |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 伴刀豆球蛋白 、金奈米粒子 、氧化鐵奈米粒子 、A型流行性感冒病毒 、大腸桿菌 |
| 外文關鍵詞: | Concanavalin A (Con A), Au nanoparticles, Fe3O4 nanoparticles, influenza A virus, E. coli |
| 相關次數: | 點閱:191 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分別以檸檬酸鈉還原法與化學共沉澱法合成金奈米粒子與氧化鐵磁性奈米粒子,然後在其表面修飾不同分子量之聚乙二醇(PEG)製得Au-PEG與Fe3O4-PEG奈米粒子,再藉由碳二醯胺之活化在其表面被覆伴刀豆球蛋白(Con A),用於與流行性感冒病毒或大腸桿菌(E. coli)的鍵結。這些奈米載體分別利用穿透式電子顯微鏡(TEM)與X光繞射儀(XRD)分析其特性,而其表面所被覆之Con A則經由傅立葉轉換紅外線光譜儀(FTIR)、熱重分析儀(TGA)與蛋白質分析來確認。透過TEM與酵素免疫分析(ELISA)可得知被覆於奈米粒子上之Con A仍保有其捕捉流感病毒與大腸桿菌的能力,且Au-Con A、Au-PEG458-Con A、Au-PEG3000-Con A、Fe3O4-Con A、Fe3O4-PEG250-Con A、Fe3O4-PEG600-Con A奈米粒子與流感病毒間的解離常數分別為6.91×10-8 M、1.51×10-8 M、2.48×10-6 M、6.88×10-8 M、3.83×10-8 M、1.39×10-8 M;而Au-Con A、Au-PEG458-Con A、Fe3O4-Con A、Fe3O4-PEG250-Con A、Fe3O4-PEG600-Con A奈米粒子與大腸桿菌間的解離常數則分別為2.36×10-7 M、7.44×10-8 M、4.08×10-8 M、2.943×10-8 M、2.33×10-8 M,顯示奈米粒子表面修飾適當分子量之PEG可以提升其與流感病毒或大腸桿菌之間的鍵結能力。本硏究結果有助於疫苗或食品檢測方面的發展。
In this study, Au nanoparticles (NPs) and Fe3O4 NPs were synthesized by sodium citrate reduction method and co-precipitation method, respectively. Their surfaces were modified with polyethylene glycol (PEG) to yield Au-PEG and Fe3O4-PEG nanoparticles and then modified with Concanavalin A (Con A) via carbodiimide activation for the binding with influenza A virus and E. coli. Thees nanocarriers were characterized by using transmission electron microsocopy (TEM) and X-ray diffractometer (XRD). The binding of Con A on the surface of nanoparticles were confirmed by Fourier-transform infrared spectrometer (FTIR) spectroscopy, thermogravimetric analysis (TGA) and protein assay. Furthermore, it was demonstrated that the Con A bound on the nanoparticles retained its capability for the capture of influenza A virus and E. coli by enzyme linked immunosorbent assay (ELISA) and TEM analysis. It was shown that the dissociation constants for Au-Con A, Au-PEG458-Con A, Au-PEG3000-Con A, Fe3O4-Con A, Fe3O4-PEG250-Con A and Fe3O4-PEG600-Con A nanoparticles with virus were 6.91×10-8 M, 1.51×10-8 M, 2.48×10-6 M, 6.88×10-8 M, 3.83×10-8 M and 1.39×10-8 M, respectively. Also, the dissociation constants for Au-Con A, Au-PEG458-Con A, Fe3O4-Con A, Fe3O4-PEG250-Con A and Fe3O4-PEG600-Con A nanoparticles with E. coli were 2.36×10-7 M, 7.44×10-8 M, 4.08×10-8 M, 2.943×10-8 M and 2.33×10-8 M, respectively. This revealed that the modification with PEG led to the better capability for the capture of influenza A virus and E. coli. These results are helpful for the development of vaccines or food inspection.
[1] D. Ivanowski, Concerning the mosaic disease of the tobacco plant, Phytopathology., 7, 27-30, 1892.
[2] M. W. Beijerinck, Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves, Phytopathology., 7, 33-52, 1989.
[3] H. Lecoq, Discovery of the first virus, Tobacco mosaic virus: 1892 or 1898 ?, C. R. Acad. Sci., 324, 929-933, 2001.
[4] 閻啟泰, 蘇慶華, 商惠芳, 楊定一, 實用微生物及免疫學, 華杏, 2011.
[5] K. Das, J. M. Aramini, L. C. Ma, R. M. Krug, and E. Arnold, Structures of influenza A proteins and insights into antiviral drug targets, Nat. Struct. Mol. Biol., 17, 530-538, 2010.
[6] 哈茲爾廷, 對抗病毒大作戰, 科學人雜誌, 16, 34-38, 2003.
[7] T. M. Tumpey, C. F. Basler, P. V. Aguilar, H. Zeng, A. Solórzano, D. E. Swayne, N. J. Cox, J. M. Katz, J. K. Taubenberger, P. Palese, and A. García-Sastre, Characterization of the reconstructed 1918 spanish influenza pandemic virus, Science, 310, 77-80, 2005.
[8] A. W. Crosby, America's forgotten pandemic: the influenza of 1918, Cambridge University Press, 2003.
[9] E. C. J. Claas, J. C. de Jong, R. van Beek, G. F. Rimmelzwaan, and A. D. M. E. Osterhaus, Human influenza virus A/HongKong/156/97 (H5N1) infection, Vaccine, 16, 977-978, 1998.
[10] J. C. d. Jong, E. C. J. Claas, A. D. M. E. Osterhaus, R. G. Webster, and W. L. Lim, A pandemic warning?, Nature, 389, 544, 1997.
[11] X. J. Ma, Y. L. Shu, K. Nie, M. Qin, D. Y. Wang, R.B. Gao, M. Wang, L. Y. Wen, F. Han, S. M. Zhou, X. Zhao, Y. H. Cheng, D. X. Li, and X. P. Dong, Visual detection of pandemic influenza A H1N1 virus 2009 by reverse-transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye, J. Virol. Methods., 167, 214-217, 2010.
[12] N. M. Scalera and S. B. Mossad, The first pandemic of the 21st century: a review of the 2009 pandemic variant influenza A (H1N1) virus, Postgrad. Med., 121, 43-47,2009.
[13] D. J. Faix, S. S. Sherman, and S. H. Waterman, Rapid-test sensitivity for novel swine-origin influenza A (H1N1) virus in humans, N. Engl. J. Med., 361, 728-729, 2009.
[14] S. Marozin, V. Gregory, K. Cameron, M. Bennett, M. Valette, M. Aymard, E. Foni, G. Barigazzi, Y. Lin, and A. Hay, Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe, J. Gen. Virol., 83, 735-745, 2002.
[15] A. Rodriguez, I. Martin-Loeches, J. Bonastre, P. Olaechea, F. Alvarez-Lerma, R. Zaragoza, J. Guerrero, J. Blanco, F. Gordo, F. Pozo, J. Lorente, J. Carratala, M. Cordero, J. Rello, A. Esteban, and C. Leon, First influenza season after the 2009 pandemic influenza: report of the first 300 ICU admissions in Spain, Med. Intensiva., 35, 208-216, 2011.
[16] N. A. M. Molinari, I. R. Ortega-Sanchez, M. L. Messonnier, W. W. Thompson, P. M. Wortley, E. Weintraub, and C. B. Bridges, The annual impact of seasonal influenza in the US: Measuring disease burden and costs, Vaccine, 25, 5086-5096, 2007.
[17] K. Apostolov and T. H. Flewett, Further observations on the structure of influenza viruses A and C, J. Gen. Virol., 4, 365-370, 1969.
[18] A. Portela and P. Digard, The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication, J. Gen. Virol., 83, 723-734, 2002.
[19] Y. Amano and Q. Cheng, Detection of influenza virus: traditional approaches and development of biosensors, Anal. Bioanal. Chem., 381, 156-164, 2005.
[20] G. B. Karlsson Hedestam, R. A. Fouchier, S. Phogat, D. R. Burton, J. Sodroski, and R. T. Wyatt, The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus, Nat. Rev. Microbiol., 6, 143-155, 2008.
[21] Y. Fujiyoshi, N. P. Kume, K. Sakata, and S. B. Sato, Fine structure of influenza A virus observed by electron cryo-microscopy, EMBO. J., 13, 318-326, 1994.
[22] R. A. M. Fouchier, V. Munster, A. Wallensten, T. M. Bestebroer, S. Herfst, D. Smith, G. F. Rimmelzwaan, B. Olsen, and A.D. M. E. Osterhaus, Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls, J. Virol., 79, 2814-2822, 2005.
[23] Y. Hu, X. Liu, S. Li, X. Guo, Y. Yang, and M. Jin, Complete genome sequence of a novel H4N1 influenza virus isolated from a pig in central China, J. Virol., 86, 13879, 2012.
[24] R. J. Webby and R. G. Webster, Are we ready for pandemic influenza?, Science, 302, 1519-1522, 2003.
[25] K. Yohannes, P. Roche, J. Spencer, and A. Hampson, Annual report of the national influenza surveillance scheme, Commun. Dis. Intell. Q. Rep., 27, 162-172, 2003.
[26] P. B. Rosenthal, X. Zhang, F. Formanowski, W. Fitz, C. H. Wong, H. Meier-Ewert, J. J. Skehel, and D. C. Wiley, Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus, Nature, 396, 92-96, 1998.
[27] G. Herrler and H. D. Klenk, Structure and function of the HEF glycoprotein of influenza C virus, Adv. Virus. Res., 40, 213-234, 1991.
[28] B. Bean, Antiviral therapy: current concepts and practices, Clin. Microbiol. Rev., 5, 146-182, 1992.
[29] L. Kaiser, C. E. Crump, and F. G. Hayden, In vitro activity of pleconaril and AG7088 against selected serotypes and clinical isolates of human rhinoviruses, Antiviral. Res., 47, 215-220, 2000.
[30] G. M. Schiff and J. R. Sherwood, Clinical activity of pleconaril in an experimentally induced coxsackievirus A21 respiratory infection, J. Infect. Dis., 181, 20-26, 2000.
[31] A. K. Patick and K. E. Potts, Protease inhibitors as antiviral Agents, Clin. Microbiol. Rev., 11, 614-627, 1998.
[32] J. B. Walker, E. K. Hussey, J. J. Treanor, A. Montalvo, Jr., and F. G. Hayden, Effects of the neuraminidase inhibitor zanamavir on otologic manifestations of experimental human influenza, J. Infect. Dis., 176, 1417-1422, 1997.
[33] A. K. Field and K. K. Biron, The end of innocence revisited: resistance of herpesviruses to antiviral drugs, Clin. Microbiol. Rev., 7, 1-13, 1994.
[34] S. Lakhani, Early clinical pathologists: Edward Jenner (1749-1823), J. Clin. Pathol., 45, 756-758, 1992.
[35] S. Riedel, Edward Jenner and the history of smallpox and vaccination, BUMC Proceedings, 18, 21-25, 2005.
[36] N. Barquet and P. Domingo, Smallpox: the triumph over the most terrible of the ministers of death, Ann. Intern. Med., 127, 635-642, 1997.
[37] J. B. Ulmer, U. Valley, and R. Rappuoli, Vaccine manufacturing: challenges and solutions, Nat. Biotechnol., 24, 1377-1383, 2006.
[38] J. Holmgren and C. Czerkinsky, Mucosal immunity and vaccines, Nat. Med., 11, S45-S53, 2005.
[39] S. A. Plotkin, Vaccines: past, present and future, Nat. Med., 11, S5-S11, 2005.
[40] 井手 亮, 大西 真, 引起集體食物中毒的大腸桿菌O111, 牛頓 雜誌櫃, 46, 2011.
[41] A. Mohammed Fayaz, M. Girilal, S. A. Mahdy, S. S. Somsundar, R. Venkatesan, and P. T. Kalaichelvan, Vancomycin bound biogenic gold nanoparticles: A different perspective for development of anti VRSA agents, Process. Biochem., 46, 636-641, 2011.
[42] P. Laurino, R. Kikkeri, N. Azzouz, and P. H. Seeberger, Detection of bacteria using glyco-dendronized polylysine prepared by continuous flow photofunctionalization, Nano. Lett., 11, 73-78, 2011.
[43] S. Chatterjee, A. Bandyopadhyay, and K. Sarkar, Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application, J. Nanobiotechnology., 9, 1-7, 2011.
[44] H. Yang, Y. Wang, H. Qi, Q. Gao, and C. Zhang, Electrogenerated chemiluminescence biosensor incorporating ruthenium complex-labelled Concanavalin A as a probe for the detection of Escherichia coli, Biosens. Bioelectron., 35, 376-381, 2012.
[45] I. H. Cho and J. Irudayaraj, In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection, Int. J. Food. Microbiol., 164, 70-75, 2013.
[46] J. B. Sumner and S. F. Howell, The role of divalent metals in the reversible inactivation of jack bean hemagglutinin, J. Biol. Chem., 115, 582-588, 1936.
[47] J. L. Wang, B. A. Cunningham, M. J. Waxdal, and G. M. Edelman, The covalent and three-dimensional structural of concanavalin A. I. Amino acid sequence of cyanogen bromide fragments F1 and F2, J. Biol. Chem., 250, 1490-1502, 1975.
[48] B. A. Cunningham, J. L. Wang, M. J. Waxdal, and G. M. Edelman, The covalent and three-dimensional structure of concanavalin A. II. Amino acid sequence of cyanogen bromide fragment F3, J. Biol. Chem., 250, 1503-1512, 1975.
[49] G. M. Edelman, B. A. Cunningham, G. N. Reeke, J. W. Becker, M. J. Waxdal, and J. L. Wang, The covalent and three-dimensional structure of concanavalin A, Proc.Natl. Acad. Sci., 69, 2580-2584, 1972.
[50] R. Loris, T. Hamelryck, J. Bouckaert, and L. Wyns, Legume lectin structure, Biochim. Biophys. Acta., 1383, 9-36, 1998.
[51] Z. Derewenda, J. Yariv, J. R. Helliwell, A. J. Kalb, E. J. Dodson, M. Z. Papiz, T. Wan, and J. Campbell, The structure of the saccharide-binding site of concanavalin-A, EMBO. J., 8, 2189-2193, 1989.
[52] A. J. Kalb and A. Levitzki, Metal-binding sites of concanavalin A and their role in the binding of alpha-methyl d-glucopyranoside, Biochem. J., 109, 669-672, 1968.
[53] M. Dani, F. Manca, and G. Rialdi, Calorimetric study of concanavalin-a binding to saccharides, Biochim. Biophys. Acta., 667, 108-117, 1981.
[54] K. D. Hardman and C. F. Ainsworth, Structure of concanavalin A at 2.4-Ang resolution, Biochemistry, 11, 4910-4919, 1972.
[55] J. Yariv, A. J. Kalb, and A. Levitki, The interaction of concanavalin A with methyl α-D-glucopyranoside, Biochim. Biophys. Acta., 165, 303-305, 1968.
[56] S. Sinha, Y. Li, T. D. Williams, and E. M. Topp, Protein conformation in amorphous solids by FTIR and by hydrogen/deuterium exchange with mass spectrometry, Biophys. J., 95, 5951-5961, 2008.
[57] Q. Xu and T. A. Keiderling, Trifluoroethanol-induced unfolding of concanavalin A: equilibrium and time-resolved optical spectroscopic studies, Biochemistry, 44, 7976-7987, 2005.
[58] W. D. McCubbin and C. M. Kay, Molecular weight studies on concanavalin A, Biochem. Biophys. Res. Commun., 44, 101-109, 1971.
[59] A. J. Kalb and A. Lustig, The molecular weight of concanavalin A, Biochim. Biophys. Acta., 168, 366-367, 1968.
[60] R. Zand, B. B. Agrawal, and I. J. Goldstein, pH-dependent conformational changes of concanavalin A, Proc. Natl. Acad. Sci. U. S. A., 68, 2173-2176, 1971.
[61] E. Oh, D. Lee, Y.-P. Kim, S. Y. Cha, D.-B. Oh, H. A. Kang, J. Kim, and H. S. Kim, Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation, Angew. Chem. Int. Ed., 45, 7959-7963, 2006.
[62] J. L. Wang, B. A. Cunningham, and G. M. Edelman, Unusual fragments in the subunit structure of concanavalin A, Proc. Natl. Acad. Sci. U. S. A., 68, 1130-1134, 1971.
[63] M. Inbar and L. Sachs, Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells, Proc. Natl. Acad. Sci. U. S. A., 63, 1418-1425, 1969.
[64] W. Eckhart, R. Dulbecco, and M. M. Burger, Temperature-dependent surface changes in cells infected or transformed by a thermosensitive mutant of polyoma virus, Proc. Natl. Acad. Sci. U. S. A., 68, 283-286, 1971.
[65] J. B. Sumner and S. F. Howell, The non-identity of jack bean agglutinin with crystalline urease, J. Immunol., 29, 133-134, 1935.
[66] A. E. Powell and M. A. Leon, Reversible interaction of human lymphocytes with the mitogen concanavalin A, Exp. Cell. Res., 62, 315-325, 1970.
[67] W. H. Beckert and M. M. Sharkey, Mitogenic activity of the jack bean (Canavalia ensiformis) with rabbit peripheral blood lymphocytes, Int. Arch. Allergy. Appl. Immunol., 39, 337-341, 1970.
[68] C. P. Chang, M. C. Yang, H. S. Liu, Y. S. Lin, and H. Y. Lei, Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model, Hepatology, 45, 286-296, 2007.
[69] J. B. Sumner and S. F. Howell, Identification of hemagglutinin of jack bean with concanavalin A, J. Bacteriol., 32, 227-237, 1936.
[70] I. J. Goldstein, C. E. Hollerman, and J. M. Merrick, Protein-carbohydrate interaction I. The interaction of polysaccharides with concanavalin A, Biochim. Biophys. Acta., 97, 68-76, 1965.
[71] C. L. Nilsson, Lectins: proteins that interpret the sugar code, Anal. Chem., 75, 348a-353a, 2003.
[72] L. Xiong, D. Andrews, and F. Regnier, Comparative proteomics of glycoproteins based on lectin selection and isotope coding, J. Proteome. Res., 2, 618-625, 2003.
[73] G. Irwin J, H. R. Colin, M. Michel, O. Toshiaki, and S. Nathan, What should be called a lectin?, Nature, 285, 66, 1980.
[74] A. Bruck, R. Abu-Dahab, G. Borchard, U. F. Schafer, and C. M. Lehr, Lectin-functionalized liposomes for pulmonary drug delivery: interaction with human alveolar epithelial cells, J. Drug. Target., 9, 241-251, 2001.
[75] N. Sharon and H. Lis, Lectins as cell recognition molecules, Science, 246, 227-234, 1989.
[76] W. J. Peumans and E. J. Van Damme, Plant lectins: specific tools for the identification, isolation, and characterization of O-linked glycans, Crit. Rev. Biochem. Mol. Biol., 33, 209-258, 1998.
[77] A. Engering, T. B. H. Geijtenbeek, and Y. van Kooyk, Immune escape through C-type lectins on dendritic cells, Trends. Immunol., 23, 480-485, 2002.
[78] W. J. Peumans and E. J. Van Damme, Lectins as plant defense proteins, Plant. Physiol., 109, 347-352, 1995.
[79] J. S. Moore, X. Wu, R. Kulhavy, M. Tomana, J. Novak, Z. Moldoveanu, R. Brown, P. A. Goepfert, and J. Mestecky, Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals, AIDS, 19, 381-389, 2005.
[80] J. Novak, B. A. Julian, M. Tomana, and J. Mesteck, Progress in molecular and genetic studies of IgA nephropathy, J. Clin. Immunol., 21, 310-327, 2001.
[81] R. Qiu, X. Zhang, and F. E. Regnier, A method for the identification of glycoproteins from human serum by a combination of lectin affinity chromatography along with anion exchange and Cu-IMAC selection of tryptic peptides, J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 845, 143-150, 2007.
[82] A. Kamra and M. N. Gupta, Crosslinked concanavalin A-O-(diethylaminoethyl)-cellulose-an affinity medium for concanavalin A-interacting glycoproteins, Anal. Biochem., 164, 405-410, 1987.
[83] I. Yahara and G. M. Edelman, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci. U. S. A., 69, 608-612, 1972.
[84] J. W. Becker, G. N. Reeke, Jr., J. L. Wang, B. A. Cunningham, and G. M. Edelman, The covalent and three-dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides, J. Biol. Chem., 250, 1513-1524, 1975.
[85] K. Sparbier, S. Koch, I. Kessler, T. Wenzel, and M. Kostrzewa, Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles, J. Biomol. Tech., 16, 407-413, 2005.
[86] I. J. Goldstein, C. E. Hollerman, and E. E. Smith, Protein-carbohydrate interaction. II. Inhibition studies on the interaction of concanavalin A with polysaccharides, Biochemistry, 4, 876-883, 1965.
[87] Z. Yang and W. S. Hancock, Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column, J. Chromatogr. A, 1053, 79-88, 2004.
[88] M. Geng, X. Zhang, M. Bina, and F. Regnier, Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests, J. Chromatogr. B. Biomed. Sci. Appl., 752, 293-306, 2001.
[89] 張志豪, 表面修飾伴刀豆球蛋白之奈米粒子的合成與應用, 國立成功大學化學工程學系碩士論文, 2012.
[90] M. Lin, C. Guo, J. Li, D. Zhou, K. Liu, X. Zhang, T. Xu, H. Zhang, L. Wang, and B. Yang, Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%, ACS Appl. Mater. Interfaces., 6, 5860-5868, 2014.
[91] X. Liu, N. Huang, H. Li, H. Wang, Q. Jin, and J. Ji, Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy, ACS Appl. Mater. Interfaces., 6, 5657-5668, 2014.
[92] M. Sohrab and S. S. Jerome, A miniature optical glucose sensor based on affinity binding, Nat. Biotechnol., 2, 885-890, 1984.
[93] C. Kaittanis, S. Nath, and J. M. Perez, Rapid nanoparticle-mediated monitoring of bacterial metabolic activity and assessment of antimicrobial susceptibility in blood with magnetic relaxation, PLoS One, 3, e3253, 2008.
[94] S. Nath, C. Kaittanis, A. Tinkham, and J. M. Perez, Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility, Anal. Chem., 80, 1033-1038, 2008.
[95] R. Kikkeri, F. Kamena, T. Gupta, L. H. Hossain, S. Boonyarattanakalin, G. Gorodyska, E. Beurer, G. Coullerez, M. Textor, and P. H. Seeberger, Ru(II) glycodendrimers as probes to study lectin-carbohydrate interactions and electrochemically measure monosaccharide and oligosaccharide concentrations, Langmuir, 26, 1520-1523, 2010.
[96] M. D. Oliveira, M. T. Correia, and F. B. Diniz, Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor, Biosens. Bioelectron., 25, 728-732, 2009.
[97] H. Lis and N. Sharon, Protein glycosylation, European Journal of Biochemistry, 218, 1-27, 1993.
[98] A. Varki and M. J. Chrispeels, Essentials of glycobiology. CSHL Press, 1999.
[99] S. G. Bradley, N. M. Marecki, J. S. Bond, A. E. Munson, and D. T. John, Enhanced cytotoxicity in mice of combinations of concanavalin A and selected antitumor drugs, Adv. Exp. Med. Biol., 55, 291-307, 1975.
[100] T. Kataoka, F. Oh-hashi, Y. Sakurai, and K. Gomi, In vivo potentiation of concanavalin A-bound L1210 vaccine by antimacrophage agents, Cancer. Res., 40, 3832-3838, 1980.
[101] P. Lorea, D. Goldschmidt, F. Darro, I. Salmon, N. Bovin, H. J. Gabius, R. Kiss, A. Danguy, In vitro characterization of lectin-induced alterations on the proliferative activity of three human melanoma cell lines, Melanoma. Res., 7, 353-363, 1997.
[102] E. Gorelik, U. Galili, and A. Raz, On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis, Cancer. Metastasis. Rev., 20, 245-277, 2001.
[103] B. Liu, M. W. Min, and J. K. Bao, Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells, Autophagy, 5, 432-433, 2009.
[104] Y. Hu, P. Zuo, and B.-C. Ye, Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin, Biosens. Bioelectron., 43, 79-83, 2013.
[105] X. Zhang, Y. Teng, Y. Fu, L. Xu, S. Zhang, B. He, C. Wang, and W. Zhang, Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells, Anal. Chem., 82, 9455-9460, 2010.
[106] L. Ding, W. Cheng, X. Wang, Y. Xue, J. Lei, Y. Yin, and H. Ju, A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells, Chem. Commun., 46, 7161-7163, 2009.
[107] G. nchez-Pomales and R. A. Zangmeister, Recent advances in electrochemical glycobiosensing, Int. J. Electrochem., 2011, 1-11, 2011.
[108] A. Matsumoto, N. Sato, K. Kataoka, and Y. Miyahara, Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode, J. Am. Chem. Soc., 131, 12022-12023, 2009.
[109] W. Cheng, L. Ding, J. Lei, S. Ding, and H. Ju, Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate, Anal. Chem., 80, 3867-3872, 2008.
[110] N. Sharon and H. Lis, History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 14, 53r-62r, 2004.
[111] D. H. Dube and C. R. Bertozzi, Glycans in cancer and inflammation-potential for therapeutics and diagnostics, Nat. Rev. Drug. Discov., 4, 477-488, 2005.
[112] K. Yvette van and A. R. Gabriel, Protein-glycan interactions in the control of innate and adaptive immune responses, Nat. Immunol., 9, 593-601, 2008.
[113] Y. Wan, D. Zhang, and B. Hou, Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay, Talanta, 80, 218-223, 2009.
[114] D. L. O. Maria, T. S. C. Maria, and B. D. Flamarion, A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis, Synth. Met., 159, 2162-2164, 2009.
[115] M. D. Oliveira, M. T. Correia, L. C. Coelho, and F. B. Diniz, Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral, Colloids. Surf. B. Biointerfaces., 66, 13-19, 2008.
[116] M. Gamella, S. Campuzano, C. Parrado, A. J. Reviejo, and J. M. Pingarron, Microorganisms recognition and quantification by lectin adsorptive affinity impedance, Talanta, 78, 1303-1309, 2009.
[117] Y. Xue, L. Ding, J. Lei, and H. Ju, A simple electrochemical lectin-probe for in situ homogeneous cytosensing and facile evaluation of cell surface glycan, Biosens. Bioelectron., 26, 169-174, 2010.
[118] J. J. Zhang, F. F. Cheng, T. T. Zheng, and J. J. Zhu, Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein, Anal. Chem., 82, 3547-3555, 2010.
[119] R. H. Fang, C. M. J. Hu, B. T. Luk, W. Gao, J. A. Copp, Y. Tai, D. E. O’Connor, and L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery, Nano. Lett., 14, 2181-2188, 2014.
[120] J. Gao, H. Gu, and B. Xu, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications, Acc. Chem. Res., 42, 1097-1107, 2009.
[121] Y. W. Jun, J. W. Seo, and J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Acc. Chem. Res., 41, 179-189, 2008.
[122] H.Y. Park, M. J. Schadt, Wang, I. I. S. Lim, P. N. Njoki, S. H. Kim, M. Y. Jang, J. Luo, C. J. Zhong, Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation, Langmuir, 23, 9050-9056, 2007.
[123] S. T. Selvan, T. T. Y. Tan, D. K. Yi, and N. R. Jana, Functional and multifunctional nanoparticles for bioimaging and biosensing, Langmuir, 26, 11631-11641, 2009.
[124] L. Jing-Liang and M. Gu, Gold-nanoparticle-enhanced cancer photothermal therapy, IEEE J. Sel. Top. Quantum. Electron., 16, 989-996, 2010.
[125] J. Pichaandi, J.-C. Boyer, K. R. Delaney, and F. C. J. M. van Veggel, Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging, J. Phys. Chem. C, 115, 19054-19064, 2011.
[126] Y. Wang, R. Hu, G. Lin, I. Roy, and K. T. Yong, Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity, ACS Appl. Mater. Interfaces., 5, 2786-2799, 2013.
[127] A. Gautam and F. C. J. M. van Veggel, Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications, J. Mater. Chem. B, 1, 5186-5200, 2013.
[128] M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CATTECH, 6, 102-115, 2002.
[129] T. Ishida and M. Haruta, Gold catalysts: towards sustainable chemistry, Angew. Chem. Int. Ed., 46, 7154-7156, 2007.
[130] M. C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293-346, 2004.
[131] P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 41, 1578-1486, 2008.
[132] S. K. Ghosh and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev., 107, 4797-4862, 2007.
[133] H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, Enzyme-modified nanoporous gold-based electrochemical biosensors, Biosens. Bioelectron., 24, 3014-3018, 2009.
[134] C. Staii, D. W. Wood, and G. Scoles, Verification of biochemical activity for proteins nanografted on gold surfaces, J. Am. Chem. Soc., 130, 640-646, 2007.
[135] S. Bharathi and M. Nogami, A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme, Analyst, 126, 1919-1922, 2001.
[136] W. Cai, T. Gao, H. Hong, and J. Sun, Applications of gold nanoparticles in cancer nanotechnology, Nanotechnol. Sci. Appl., 2008, 1-27, 2008.
[137] R. A. Williams, Colloid and surface engineering: Applications in the process industries, Butterworth-Heinemann, 1994.
[138] M. M. Yallapu, S. P. Foy, T. K. Jain, and V. Labhasetwar, PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications, Pharm. Res., 27, 2283-2295, 2010.
[139] S. Rashdan, M. Bououdina, and A. Al-Saie, Effect of the preparation route, PEG and annealing on the phase stability of Fe3O4 nanoparticles and their magnetic properties, J. Exp. Nanosci., 8, 210-222, 2011.
[140] U. Maver, M. Bele, D. Makovec, S. Campelj, J. Jamnik, and M. Gaberscek, Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles, J. Magn. Magn. Mater., 321, 3187-3192, 2009.
[141] S. I. Stoeva, F. Huo, J. S. Lee, and C. A. Mirkin, Three-layer composite magnetic nanoparticle probes for DNA, J. Am. Chem. Soc., 127, 15362-15363, 2005.
[142] S. Mondini, C. Drago, A. M. Ferretti, A. Puglisi, and A. Ponti, Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant, Nanotechnology, 24, 105702, 2013.
[143] J. F. Lutz, S. Stiller, A. Hoth, L. Kaufner, U. Pison, and R. Cartier, One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents, Biomacromolecules, 7, 3132-3138, 2006.
[144] 劉燕玲, 伴刀豆球蛋白固定化於磁性奈米粒子之研究, 國立成功大學化學工程研究所碩士論文, 2009.
[145] M. L. Yang, Y. H. Chen, S. W. Wang, Y. J. Huang, C. H. Leu, N. C. Yeh, C. Y. Chu, C. C. Lin, G. S. Shieh, Y. L. Chen, J. R. Wang, C. H. Wang, C. L. Wu, and A. L. Shiau, Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis, J. Virol., 85, 10010-10020, 2011.
[146] L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49, 352, 1913.
[147] L. Michaelis, M. L. Menten, K. A. Johnson, and R. S. Goody, The original Michaelis constant: translation of the 1913 Michaelis-Menten paper, Biochemistry, 50, 8264-8269, 2011.
[148] G. E. Briggs and J. B. S. Haldane, A note on the kinetics of enzyme action, Biochem. J., 19, 338-339, 1925.
[149] L. Zhang, S. Qiao, Y. Jin, H. Yang, S. Budihartono, F. Stahr, Z. Yan, X. Wang, Z. Hao, and G. Q. Lu, Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure, Adv. Funct. Mater., 18, 3203-3212, 2008.
[150] S. C. Kou, B. J. Cherayil, W. Min, B. P. English, and X. S. Xie, Single-molecule Michaelis−Menten equations, J. Phys. Chem. B, 109, 19068-19081, 2005.