| 研究生: |
許鶴威 Hsu, Ho-wei |
|---|---|
| 論文名稱: |
覆晶構裝應力奇異性與破壞分析 Stress Singularity and Fracture Analyses in the Flip Chip Assembly |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 覆晶構裝 、應力奇異性 、應力強度因子 |
| 外文關鍵詞: | flip chip assembly, stress singularity, stress intensity factor |
| 相關次數: | 點閱:122 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
覆晶構裝(Flip chip assembly)中存在許多材料與幾何不連續之界面,這些界面可能於尖端處發生局部的應力值過大現象,因而造成破壞。本研究將對數處異相材料交接界面之位置,依照其界面型態,分別以楔形(Wedge)及全相(Junction)結構來加以模擬。文中以Muskhelishvili複變函數為理論基礎,求解多種材料楔形與全相結構之應力奇異性,探討不同材料性質與幾何外形對應力奇異性之影響。
首先假設所有材料性質為等向性、線彈性以及與溫度無關。固定晶片、錫球與基板的材料性質,改變底填膠之楊氏係數、蒲松氏比與角度,求得不同材料與角度組合下之應力奇異性階數。藉由應力奇異性階數─角度分佈圖,找出最小奇異性階數所對應之角度,提供覆晶構裝幾何外形與底填膠材料選擇之設計參考。
除了分析各界面間的應力奇異性階數外,另外針對較易破壞之晶片/錫球界面,分別探討有無底填膠時,改變一些設計參數(晶片與基板之厚度、晶片凸出距離、錫球間距、錫球幾何形狀、基板材料之楊氏係數與基板材料之熱膨脹係數),對應力強度因子與翹曲量之影響,作為覆晶構裝可靠度之設計參考。
In this paper, we analyze the behavior of stress singularities and obtain numerically the stress intensity factors near the geometric and material discontinuities of the flip chip assembly. The governing factors that affect the failure probability include the material properties, geometry, and the applied thermal loads. All materials are assumed to be linear elastic, isotropic and temperature independent.
In the stress singularity analyses, we only change the material properties and assembling angles of underfill. After employing the eigenfunction expansion method on the complex potential function, the singularity orders at the wedge or junction tips in the assembly are computed numerically. From the results, the conditions for weak singularities can be obtained.
In the second part, we focus on the determination of the stress intensity factors at chip-solder joints interface and the global warping of the integrated structure. The parameters, such as chip and substrate thickness, chip overhang, solder joints pitch, solder joint geometry, stiffness and thermal expansion coefficient of substrate, are subjected to be changed. The results provide us useful guidance for design.
[1] Tummala, R.R., “Fundamentals of microsystems packaging”, McGrear-Hill, pp. 361-392, 2001.
[2] Suhir, E., “Die attachment design and its influence on thermal stress in the die and the attachment”, Proc. 37th Electronic Components Conference, IEEE/Electronic Industries Association (EIA), pp.508-517, 1987.
[3] Madenci, E., Shkarayev, S. and Mahajan, R., “Potential failure sites in a flip-chip package with and without underfill”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 120, pp.336-341, 1998.
[4] Amagai, M., “Investigation of stress singularity fields and stress intensity factors for cracks”, Finite Elements in Analysis and Design, Vol. 30, pp. 97-124, 1998.
[5] Yao, Q. and Qu, J., “Three-dimensional versus two-dimensional finite element modeling of flip-chip packages”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 121, pp.196-201, 1999.
[6] Lu, H., Bailey, C. and Cross, M., “Reliability analysis of flip chip designs via computer simulation”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 122, pp.214-219, 2000.
[7] Xu, A.Q. and Nied, H.F., “Finite element analysis of stress singularities in attached flip chip packages”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 122, pp.301-305, 2000.
[8] Lu, H., Hung, K.C., Stoyanov, S., Bailey, C. and Chan Y.C., “No-flow underfill flip chip assembly-an experimental and modeling analysis”, Microelectronics Reliability, Vol 42 , pp. 1205-1212, 2002.
[9] Cai, X., Chen, L., Zhang, Q., Xu, B., Huang, W., Xie, X. and Cheng, Z., “Quantitative mechanism of significant benefits of underfill in flip-chip assemblies”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 125, pp.84-92, 2003.
[10] Shkarayev, S., Savastiouk, S. and Siniaguine, O., “Stress and reliability analysis of electronic packages with ultra-thin chips”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 125, pp.98-103, 2003.
[11] Williams, M.L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 74, pp. 526-528, 1952.
[12] Bogy, D.B., “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 35, pp. 460-466, 1968.
[13] Bogy, D.B., “Two edge-bonded elastic wedges of different materials and wedge angles under surface transactions”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 38, pp. 377-386, 1971.
[14] Bogy, D.B. and Wang, K.C., “Stress singularities at interface corners in bonded dissimilar isotropic elastic materials”, International Journal of Solids and Structures, Vol. 7, pp. 993-1005, 1971.
[15] Theocaris, P.S., “The order of singularity at a multi-wedge corner of a composite plate”, International Journal of Engineering Science, Vol. 12, pp. 107-120, 1974.
[16] Muskhelishvili, N.I., “Some basic problems of the mathematical theory of elasticity”, Noordhoff, Holland, Chapter 5, 1953.
[17] Dundurs, J., “Effect of elastic constants on stress in composite under plane deformation”, Journal of Composite Materials, Vol. 1, pp. 310-322, 1967.
[18] Chen, D.H. and Nisitani, H., “Singular stress field in two bonded wedges”, Transaction of Japan Society of Mechanical Engineering A, Vol. 58, pp. 457-464, 1992.
[19] Chen, D.H., “Stress intensity factors for V-notched strip under tension and in-plane bending”, International Journal of Fracture, Vol. 70, pp. 81-97, 1995.
[20] Chen, D.H. and Nisitani, H., “Singular stress field near the corner of jointed dissimilar materials”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 60, pp. 607-613, 1993.
[21] Pageau, S.S., Joseph, P.F., and Biggers, S.B.J., “The order of stress singularities for bonded and disbonded three-material junctions”, International Journal of Solids and Structures, Vol. 31, pp. 2979-2997, 1994.
[22] Lau, J.H., “Flip chip technologies”, WILEY, pp. 30-32, 1995.
[23] Liu, .H., Xu, J.Q. and Ding, H.J., “Order of singularity and singular stress field about an axisymmetric interface corner in three-dimensional isotropic elasticity”, International Journal of Solids and Structures, Vol. 36, No. 29, pp.4425-4445, May, 1999.
[24] Nistitani, H., “Two dimensional problem solved using a digital computer”, Journal of the Japan Society of Mechanical Engineers, Vol. 70, pp. 627-635, 1967. (in Japanese)
[25] Munz, D., Fett, T. and Yang, Y.Y., “The regular stress term in the bonded dissimilar materials after a change in temperature”, engineering fracture mechanics, Vol. 44, pp. 185-194, 1993.
[26] Yang, Y.Y. and Munz, D., “Determination of the regular stress term in a dissimilar materials joint under thermal loading by the mellin transform”, Journal of Thermal Stresses, Vol. 17, pp. 321-336, 1994.
[27] Munz, D. and Yang, Y.Y., “Stress near the edge of bonded dissimilar materials described by two stress intensity factors”, International Journal of Fracture, Vol. 60, pp. 169-177, 1993.
[28] 陳重德, “楔形結構應力奇異性之有限元素分析”, 國立成功大學機械工程學系碩士論文, 2000.
[29] Yang, Y.Y. and Munz, D., “Stress intensity factor and stress distribution in a joint with an interface corner under thermal and mechanical loading”, Computers and Structures, Vol. 57, No. 3, pp. 467-476, 1995.
[30] 吳立文, “覆晶構裝於均溫負荷下的最佳設計”, 國立成功大學機械工程學系碩士論文, 2001.
[31] Zhang, W., Wu, D., and Su, B., “The effect of underfill expoxy on warpage in flip-chip assemblies”, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 21, No. 2, pp. 323-328, June 1998.
[32] J. P. Blanchard and N. M. Ghoriem, “An eigenfunction approach to singular thermal stresses in bonded strips”, Journal of Thermal Stresses, Vol. 12, pp. 501-527, 1989.