| 研究生: |
陳奕嘉 Chen, Yi-Chia |
|---|---|
| 論文名稱: |
利用Bosch深反應性離子蝕刻製程進行矽晶圓片分割 Employ Bosch DRIE process for silicon die singulation |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 電漿切割技術 、Bosch深反應性離子蝕刻製程 、矽深蝕刻 、SF6/Ar/O2電漿放電 、進階Bosch製程 |
| 外文關鍵詞: | plasma dicing technology, Bosch DRIE, SF6/Ar/O2 plasma discharge |
| 相關次數: | 點閱:117 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著元件不斷的減薄與微縮下,現行業界採行之刀具切割與雷射切割技術逐漸出現疲態,難以應付實務上之需求,而電漿切割技術則恰恰相反,在產業浪潮趨向小尺寸及薄化晶片的推波助瀾下不論是在產能、切割品質、晶片形狀多樣性等諸多面向優勢益發顯著。
本研究採用Bosch深反應性離子蝕刻製程切割矽晶圓片。Bosch深反應性離子蝕刻屬矽深蝕刻技術的一環,由沉積及蝕刻階段重複交疊而成,具備高蝕刻速率且切割溝道側壁垂直度佳之次世代晶圓切割技術。研究內容主要分為三部分,第一部分有別於標準配置採用射頻偏壓源,本研究以脈衝式直流偏壓源對雷射開槽之圖案化矽基板(線寬約6μm)進行Bosch深蝕刻製程,並比較在不同佔空比的條件下對蝕刻特性之影響,此階段得到之矽垂直蝕刻速率為3.27μm/min。第二部分以空白矽基板為試片,僅通入六氟化硫/氬氣模擬Bosch製程中蝕刻階段之製程條件,此階段得到之最高蝕刻速率為11.79μm/min。第三部分共分為前後兩個階段,在正式取得合作廠商提供之產線上試片前,前期使用由實驗室所製備之試片進行初步探討,此試片以舉離製程定義蝕刻溝道(線寬約3μm),參考第二部分取得之最佳參數,並以此為基礎進行一系列之參數調整,包含在蝕刻階段內六氟化硫/氬氣混氣中添入氧氣(SF6/Ar/O2電漿放電)、採用進階Bosch製程等,此階段取得之最佳矽垂直蝕刻速率為2.29μm/min。第三部分後半段則使用合作廠商提供之產線上試片進行實驗,以雷射開槽定義蝕刻溝道(線寬約40μm)。此階段以Bosch製程進行矽深蝕刻完成半切割加工(half-cutting),為爾後搭配研磨前切割技術(DBG)做準備,其切割深度要求介於100-200μm,此階段得到之最佳矽垂直蝕刻速率為5.91μm/min。
Plasma dicing technology has overwhelming superiority of manufacturing throughput, dicing quality, and flexible chip shape over the traditional blade dicing method, especially in thinned and small chip applications. In this dissertation, Bosch DRIE baesd plasma dicing is utilized for silicon die singulation. In comparison with standard configuration using RF biased source, in the first portion of this study, pulsed dc bias is uesd to discuss the effect of duty cycle on the etch characteristics. In the latter portion, chaning the fixed tape materials, adjusting the oxygen addition to sulfur hexafloride/argon mixing gas (SF6/Ar/O2 plasma discharge), and deposition to etch step times ratio, etc to reach high etching rate as well as vertical sidewall. The optimal etching rate obtained in the dessertation is 2.29μm/min and 5.91μm/min with linewidth 3μm and 40μm respectively.
[1] Press Relwases Gallery - Semiconductor Manufacturing [Online]. Available: http://www.yole.fr/2014-galery-Manufacturing.aspx#I00077cb0.
[2] Thin Wafer Processing and Dicing Equipment Market - Growth, Trends, and Forecast (2019-2024) [Online]. Available: https://www.mordorintelligence.com/industry-reports/thin-wafer-processing-and-dicing-equipment-market.
[3] "Thin Wafers, Temporary Bonding Equipment & Materials Market"
[4] 菊地正典, 圖解半導體製造裝置. 世茂出版社, 2008.
[5] "積體電路生產的簡介"
[6] "IC製程之簡介"
[7] W. Kroninger and F. Mariani, "Thinning and singulation of silicon: Root causes of the damage in thin chips," in 56th Electronic Components and Technology Conference 2006, 2006: IEEE, p. 6 pp.
[8] W. S. Lei, A. Kumar, and R. Yalamanchili, "Die singulation technologies for advanced packaging: A critical review," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 30, no. 4, p. 040801, 2012.
[9] D. Lishan et al., "Wafer dicing using dry etching on standard tapes and frames," in International Symposium on Microelectronics, 2014, vol. 2014, no. 1: International Microelectronics Assembly and Packaging Society, pp. 000148-000154.
[10] R. Barnett, "Plasma Dicing 300mm Framed Wafers—Analysis of Improvement in Die Strength and Cost Benefits for Thin Die Singulation," in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 2017: IEEE, pp. 343-349.
[11] R. Barnett, "Plasma dicing: benifits and process considerations," TAP TIMES, pp. 14-19, 2016.
[12] DBG(Dicing Before Grinding)製程 [Online]. Available: https://www.disco.co.jp/cn_t/solution/library/dbg.html.
[13] N. Matsubara, R. Windemuth, H. Mitsuru, and H. Atsushi, "Plasma dicing technology," in 2012 4th Electronic System-Integration Technology Conference, 2012: IEEE, pp. 1-5.
[14] K. D. Mackenzie, D. Pays-Volard, L. Martinez, C. Johnson, T. Lazerand, and R. Westerman, "Plasma-based die singulation processing technology," in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), 2014: IEEE, pp. 1577-1583.
[15] 廖亞威, 開發高密度電漿深蝕刻技術應用於矽晶圓切割. National Cheng Kung University Department of Chemical Engineering, 2018.
[16] C. S. Wong and R. Mongkolnavin, Elements of Plasma Technology. Springer Singapore, 2015.
[17] 野尻一男, 半導體乾蝕刻技術. 白象文化, 2015.
[18] 蕭宏, 半導體製程技術導論. 全華圖書, 2014.
[19] K. Nojiri, Dry Etching Technology for Semiconductors. Springer International Publishing, 2014.
[20] A. J. van Roosmalen, J. A. G. Baggerman, and S. J. H. Brader, Dry Etching for VLSI. Springer US, 2013.
[21] 劉傳璽 and 陳進來, 半導體元件物理與製程: 理論與實務. 五南, 2011.
[22] "Lecture 7 Dry Etching Techniques"
[23] 細雨潤無聲, 干法刻蝕機制的分類 [Online]. Available: https://kknews.cc/science/vamkv92.html.
[24] J. W. Coburn and H. F. Winters, "Ion‐and electron‐assisted gas‐surface chemistry—An important effect in plasma etching," Journal of Applied physics, vol. 50, no. 5, pp. 3189-3196, 1979.
[25] M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, Second Edition. CRC Press, 2018.
[26] D. M. Manos and D. L. Flamm, Plasma Etching: An Introduction. Elsevier Science, 1989.
[27] Plasma etching/Gases [Online]. Available:
http://lnf-wiki.eecs.umich.edu/wiki/Plasma_etching/Gases.
[28] 丁志明, 方維倫, and 白果能等, 微機電系統技術與應用. 行政院國家科學委員會精密儀器發展中心發行, 2004.
[29] S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions. Noyes Publications, 1990.
[30] 林冠宇, 張家豪, 沈家志, and 劉志宏, "電漿深蝕刻設備及其製程技術," 機械工業雜誌, no. 426, pp. 55-61, 2018.
[31] Bosch Process [Online]. Available:
http://samco-ucp.com/tech/03_bosch.php.
[32] A. Ayén, C. Lin, R. Braff, and M. Schmidt, "Etching Characteristics and Profile Control in a Time Multiplexed Inductively Coupled Plasma Etcher," 1998.
[33] B. Wu, A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," Journal of applied physics, vol. 108, no. 5, p. 9, 2010.
[34] C. Chang et al., "Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures," Journal of micromechanics and microengineering, vol. 15, no. 3, p. 580, 2005.
[35] "Semiconductor Manufacturing Technology"
[36] Y. Nishi and R. Doering, Handbook of Semiconductor Manufacturing Technology. CRC Press, 2017.
[37] "Advanced Silicon Etch"
[38] 顯示世界. 「面板製程刻蝕」史上最全Dry Etch分類、工藝基本原理及良率剖析 [Online]. Available:
https://kknews.cc/zh-tw/science/y2nqlgj.html.
[39] Z. Mohammadi, V. A. Shah, M. R. Jennings, C. A. Fisher, and P. Mawby, "Elimination of Microtrenching in Trenches in 4H-Silicon Carbide using shadow masking," in Materials Science Forum, 2015, vol. 821: Trans Tech Publ, pp. 533-536.
[40] "Chapter 10 Etching"
[41] "Plasma RIE Etching Birck Nanotechnology Center"
[42] M. Quirk and J. Serda, Semiconductor Manufacturing Technology. Prentice Hall, 2001.
[43] G. C. Shwartz, G. C. Schwartz, and K. V. Srikrishnan, Handbook of Semiconductor Interconnection Technology. CRC Press, 2006.
[44] I. R. Saraf, M. J. Goeckner, B. E. Goodlin, K. H. Kirmse, C. T. Nelson, and L. J. Overzet, "Kinetics of the deposition step in time multiplexed deep silicon etches," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 1, p. 011208, 2013.
[45] M. Schaepkens, G. Oehrlein, and J. Cook, "Effects of radio frequency bias frequency and radio frequency bias pulsing on SiO 2 feature etching in inductively coupled fluorocarbon plasmas," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 2, pp. 856-863, 2000.
[46] S. H. Songa and M. J. Kushnerb. SiO2 Etch Properties and Ion Energy Distribution in Pulsed Capacitively Coupled Plasmas Sustained in Ar/CF4/O2* [Online]. Available: https://slideplayer.com/slide/8372313/.
[47] S. J. Wu, "A hybrid method of ultrafast laser dicing and high density plasma etching with water soluble mask for thin silicon wafer cutting," Materials Science in Semiconductor Processing, vol. 74, pp. 64-73, 2018.